# -*- coding: utf-8
"""Module of class Connection and class Ref.
This file is part of project TESPy (github.com/oemof/tespy). It's copyrighted
by the contributors recorded in the version control history of the file,
available from its original location tespy/connections/connection.py
SPDX-License-Identifier: MIT
"""
import warnings
import numpy as np
import pint
from tespy.components import Subsystem
from tespy.components.component import Component
from tespy.tools import fluid_properties as fp
from tespy.tools import logger
from tespy.tools.data_containers import DataContainer as dc
from tespy.tools.data_containers import FluidComposition as dc_flu
from tespy.tools.data_containers import FluidProperties as dc_prop
from tespy.tools.data_containers import ReferencedFluidProperties as dc_ref
from tespy.tools.data_containers import SimpleDataContainer as dc_simple
from tespy.tools.fluid_properties import CoolPropWrapper
from tespy.tools.fluid_properties import Q_mix_ph
from tespy.tools.fluid_properties import T_mix_ph
from tespy.tools.fluid_properties import T_sat_p
from tespy.tools.fluid_properties import dh_mix_dpQ
from tespy.tools.fluid_properties import dT_mix_dph
from tespy.tools.fluid_properties import dT_mix_pdh
from tespy.tools.fluid_properties import dv_mix_dph
from tespy.tools.fluid_properties import dv_mix_pdh
from tespy.tools.fluid_properties import h_mix_pQ
from tespy.tools.fluid_properties import h_mix_pT
from tespy.tools.fluid_properties import phase_mix_ph
from tespy.tools.fluid_properties import s_mix_ph
from tespy.tools.fluid_properties import v_mix_ph
from tespy.tools.fluid_properties import viscosity_mix_ph
from tespy.tools.fluid_properties.functions import T_bubble_p
from tespy.tools.fluid_properties.functions import T_dew_p
from tespy.tools.fluid_properties.functions import p_bubble_T
from tespy.tools.fluid_properties.functions import p_dew_T
from tespy.tools.fluid_properties.functions import p_sat_T
from tespy.tools.fluid_properties.helpers import get_mixture_temperature_range
from tespy.tools.fluid_properties.helpers import single_fluid
from tespy.tools.fluid_properties.wrappers import wrapper_registry
from tespy.tools.global_vars import ERR
from tespy.tools.global_vars import fluid_property_data as fpd
from tespy.tools.helpers import TESPyConnectionError
from tespy.tools.helpers import TESPyNetworkError
from tespy.tools.helpers import _get_dependents
from tespy.tools.helpers import _get_vector_dependents
from tespy.tools.helpers import _is_numeric
from tespy.tools.helpers import _is_variable
from tespy.tools.helpers import _partial_derivative
from tespy.tools.helpers import _partial_derivative_vecvar
from tespy.tools.units import SI_UNITS
[docs]
def connection_registry(type):
connection_registry.items[type.__name__] = type
return type
connection_registry.items = {}
[docs]
class ConnectionBase:
def __init__(self):
pass
def _remap_if_subsystem(self, source, target):
# If the connected source or target is a subsystem we must
# remap the source and target to its outlet/inlet
if isinstance(source, Subsystem):
source = source.outlet
if isinstance(target, Subsystem):
target = target.inlet
return source, target
def _check_types(self, source, target):
# check input parameters
if not (isinstance(source, Component) and
isinstance(target, Component)):
msg = (
"Error creating connection. Check if source and target are "
"tespy.components."
)
logger.error(msg)
raise TypeError(msg)
def _check_self_connect(self, source, target):
if source == target:
msg = (
"Error creating connection. Cannot connect component "
f"{source.label} to itself."
)
logger.error(msg)
raise TESPyConnectionError(msg)
def _check_connector_id(self, component, connector_id, connecter_locations):
if connector_id not in connecter_locations:
msg = (
"Error creating connection. Specified connector for "
f"{component.label} of class {component.__class__.__name__} "
f"({connector_id}) is not available. Select one of the "
f"following connectors {', '.join(connecter_locations)}."
)
logger.error(msg)
raise ValueError(msg)
def _parameter_specification(self, key, value):
is_numeric = False
is_quantity = False
if isinstance(value, pint.Quantity):
is_quantity = True
else:
is_numeric = _is_numeric(value)
if key == "Td_bp":
msg = (
"The parameter 'Td_bp' is depreciated and will be removed in "
"the next major release of tespy. Please use 'td_bubble' or "
"'td_dew' instead. In contrast to 'Td_bp' not the following: "
"A positive value for 'td_bubble' indicates a liquid state, "
"meaning the temperature of the fluid will be lower than the "
"associated bubble temperature by the specified value."
"A positive value for 'td_dew' indicates a gaseous state, "
"meaning the temperature of the fluid will be higher than the "
"associated dew temperature by the specified value."
)
warnings.warn(msg, FutureWarning)
if value is None:
self.get_attr(key).set_attr(is_set=False)
if f"{key}_ref" in self.property_data:
self.get_attr(f"{key}_ref").set_attr(is_set=False)
elif is_numeric or is_quantity:
# value specification
if key in self.property_data:
self.get_attr(key).set_attr(is_set=True, val=value)
else:
self.get_attr(key.replace('0', '')).set_attr(val0=value)
# reference object
elif isinstance(value, Ref):
if f"{key}_ref" not in self.property_data:
msg = f"Referencing {key} is not implemented."
logger.error(msg)
raise NotImplementedError(msg)
else:
self.get_attr(f"{key}_ref").set_attr(ref=value)
self.get_attr(f"{key}_ref").set_attr(is_set=True)
# invalid datatype for keyword
else:
msg = f"Wrong datatype for keyword argument {key}."
logger.error(msg)
raise TypeError(msg)
[docs]
def get_attr(self, key):
r"""
Get the value of a connection's attribute.
Parameters
----------
key : str
The attribute you want to retrieve.
Returns
-------
out :
Specified attribute.
"""
if key in self.__dict__:
return self.__dict__[key]
else:
msg = 'Connection has no attribute \"' + key + '\".'
logger.error(msg)
raise KeyError(msg)
def _serialize(self):
export = {}
export.update({"source": self.source.label})
export.update({"target": self.target.label})
for k in self._serializable():
export.update({k: self.get_attr(k)})
for k in self.property_data:
data = self.get_attr(k)
export.update({k: data._serialize()})
return {self.label: export}
@staticmethod
def _serializable():
return [
"source_id", "target_id",
"design_path", "design", "offdesign",
"local_design", "local_design",
"printout"
]
[docs]
def get_variables(self):
return {}
def _preprocess(self, row_idx):
self.num_eq = 0
self._structure_matrix = {}
self._rhs = {}
self._equation_set_lookup = {}
for parameter in self.parameters:
container = self.get_attr(parameter)
if container.is_set and (container.func is not None or container.structure_matrix is not None):
num_eq = self.parameters[parameter].num_eq
# the row index matches the location in the network's rhs
# and matrix
for i in range(self.num_eq, self.num_eq + num_eq):
self._equation_set_lookup[i + row_idx] = parameter
self._rhs[i + row_idx] = 0
# the structure matrix function also computes the rhs
if container.structure_matrix is not None:
container.structure_matrix(
row_idx + self.num_eq, **container.func_params
)
self.num_eq += num_eq
def _prepare_for_solver(self, system_dependencies, eq_counter):
self.num_eq = 0
self.it = 0
self.equations = {}
self._equation_lookup = {}
self._equation_scalar_dependents_lookup = {}
self._equation_vector_dependents_lookup = {}
for eq_num, value in self._equation_set_lookup.items():
if eq_num in system_dependencies:
continue
if value not in self.equations:
data = self.parameters[value]
self.equations.update({value: data})
self._assign_dependents_and_eq_mapping(
value, data, self.equations, eq_counter
)
self.num_eq += data.num_eq
eq_counter += data.num_eq
self.residual = {}
self.jacobian = {}
return eq_counter
def _assign_dependents_and_eq_mapping(self, value, data, eq_dict, eq_counter):
if data.dependents is None:
scalar_dependents = [[] for _ in range(data.num_eq)]
vector_dependents = [{} for _ in range(data.num_eq)]
else:
dependents = data.dependents(**data.func_params)
if type(dependents) == list:
scalar_dependents = _get_dependents(dependents)
vector_dependents = [{} for _ in range(data.num_eq)]
else:
scalar_dependents = _get_dependents(dependents["scalars"])
vector_dependents = _get_vector_dependents(dependents["vectors"])
# this is a temporary fix
if len(vector_dependents) < data.num_eq:
vector_dependents = [{} for _ in range(data.num_eq)]
eq_dict[value]._scalar_dependents = scalar_dependents
eq_dict[value]._vector_dependents = vector_dependents
eq_dict[value]._first_eq_index = eq_counter
for i in range(data.num_eq):
self._equation_lookup[eq_counter + i] = (value, i)
self._equation_scalar_dependents_lookup[eq_counter + i] = scalar_dependents[i]
self._equation_vector_dependents_lookup[eq_counter + i] = vector_dependents[i]
def _partial_derivative(self, var, eq_num, value, increment_filter=None, **kwargs):
result = _partial_derivative(var, value, increment_filter, **kwargs)
if result is not None:
self.jacobian[eq_num, var.J_col] = result
def _adjust_to_property_limits(self, nw):
pass
@classmethod
def _print_attributes(cls):
return []
@classmethod
def _result_attributes(cls):
return []
@classmethod
def _get_result_cols(cls, all_fluids):
return []
[docs]
def calc_results(self):
return True
[docs]
def collect_results(self, all_fluids):
return None
[docs]
@connection_registry
class Connection(ConnectionBase):
r"""
Class connection is the container for fluid properties between components.
Parameters
----------
m : float, tespy.connections.connection.Ref
Mass flow specification.
m0 : float
Starting value specification for mass flow.
p : float, tespy.connections.connection.Ref
Pressure specification.
p0 : float
Starting value specification for pressure.
h : float, tespy.connections.connection.Ref
Enthalpy specification.
h0 : float
Starting value specification for enthalpy.
fluid : dict
Fluid compostition specification.
fluid0 : dict
Starting value specification for fluid compostition.
fluid_balance : boolean
Fluid balance equation specification.
x : float
Gas phase mass fraction specification.
T : float, tespy.connections.connection.Ref
Temperature specification.
Td_bp : float
Temperature difference to boiling point at pressure corresponding
pressure of this connection in K.
v : float
Volumetric flow specification.
state : str
State of the pure fluid on this connection: liquid ('l') or gaseous
('g').
design : list
List containing design parameters (stated as string).
offdesign : list
List containing offdesign parameters (stated as string).
design_path : str
Path to individual design case for this connection.
local_offdesign : boolean
Treat this connection in offdesign mode in a design calculation.
local_design : boolean
Treat this connection in design mode in an offdesign calculation.
printout : boolean
Include this connection in the network's results printout.
label : str
Label of the connection. The default value is:
:code:`'source:source_id_target:target_id'`.
Note
----
- The fluid balance parameter applies a balancing of the fluid vector on
the specified conntion to 100 %. For example, you have four fluid
components (a, b, c and d) in your vector, you set two of them
(a and b) and want the other two (components c and d) to be a result of
your calculation. If you set this parameter to True, the equation
(0 = 1 - a - b - c - d) will be applied.
- The specification of values for design and/or offdesign is used for
automatic switch from design to offdesign calculation: All parameters
given in 'design', e.g. :code:`design=['T', 'p']`, are unset in any
offdesign calculation, parameters given in 'offdesign' are set for
offdesign calculation.
Example
-------
This example shows how to create connections and specify parameters. First
create the required components and connect them in the next step. After
that, it is possible specify parameters with the :code:`set_attr` method.
>>> from tespy.components import Sink, Source
>>> from tespy.connections import Connection, Ref
>>> so1 = Source('source1')
>>> so2 = Source('source2')
>>> si1 = Sink('sink1')
>>> si2 = Sink('sink2')
>>> so_si1 = Connection(so1, 'out1', si1, 'in1', label='connection 1')
>>> so_si2 = Connection(so2, 'out1', si2, 'in1')
>>> so_si1.label
'connection 1'
>>> so_si2.label
'source2:out1_sink2:in1'
There are different ways of setting parameters on connections: Specify
- a numeric value (for attributes mass flow, pressure and enthalpy)
- a numeric starting value (for attributes mass flow, pressure and
enthalpy)
- a dictionary (for attributes fluid and fluid0)
- a boolean value (for attributes fluid_balance, local_design,
local_offdesign).
- a referenced value (mass flow, pressure, temperature, enthalpy).
- numpy.nan or None (unsetting a value).
- a string (for attributes design_path and state).
- a list (for attributes design and offdesign).
>>> so_si1.set_attr(v=0.012, m0=10, p=5, h=400, fluid={'H2O': 1})
>>> so_si2.set_attr(m=Ref(so_si1, 2, -5), h0=700, T=200,
... fluid={'N2': 1}, fluid_balance=True,
... design=['T'], offdesign=['m', 'v'])
The set_attr method automatically converts your input in data_container
information.
>>> type(so_si1.v)
<class 'tespy.tools.data_containers.FluidProperties'>
>>> type(so_si1.fluid)
<class 'tespy.tools.data_containers.FluidComposition'>
If you want get a spcific value use the logic: connection.property.*.
Aditionally, it is possible to use the :code:`get_attr` method.
>>> so_si1.m.val0
10
>>> so_si1.m.is_set
False
>>> so_si1.m.get_attr('is_set')
False
>>> type(so_si2.m_ref.ref)
<class 'tespy.connections.connection.Ref'>
>>> so_si2.fluid_balance.is_set
True
>>> so_si2.m_ref.ref.get_attr('delta')
-5
>>> so_si2.m_ref.is_set
True
>>> type(so_si2.m_ref.ref.get_attr('obj'))
<class 'tespy.connections.connection.Connection'>
Unset the specified temperature and specify temperature difference to
boiling point (deprecated) instead.
>>> so_si2.T.is_set
True
>>> so_si2.set_attr(Td_bp=5, T=None)
>>> so_si2.T.is_set
False
>>> so_si2.Td_bp.val
5.0
>>> so_si2.set_attr(Td_bp=None)
>>> so_si2.Td_bp.is_set
False
Bubble line or dew line temperature difference:
>>> so_si2.set_attr(td_bubble=5)
>>> so_si2.td_bubble.is_set
True
>>> so_si2.td_bubble.val
5.0
>>> so_si2.set_attr(td_bubble=None)
>>> so_si2.td_bubble.is_set
False
>>> so_si2.set_attr(td_dew=5)
>>> so_si2.td_dew.is_set
True
>>> so_si2.td_dew.val
5.0
>>> so_si2.set_attr(td_dew=None)
>>> so_si2.td_dew.is_set
False
Specify the state keyword: The fluid will be forced to liquid or gaseous
state in this case.
>>> so_si2.set_attr(state='l')
>>> so_si2.state.is_set
True
>>> so_si2.set_attr(state=None)
>>> so_si2.state.is_set
False
>>> so_si2.set_attr(state='g')
>>> so_si2.state.is_set
True
>>> so_si2.set_attr(state=None)
>>> so_si2.state.is_set
False
"""
def __init__(self, source, outlet_id, target, inlet_id,
label=None, **kwargs):
source, target = self._remap_if_subsystem(source, target)
self._check_types(source, target)
self._check_self_connect(source, target)
self._check_connector_id(source, outlet_id, source.outlets())
self._check_connector_id(target, inlet_id, target.inlets())
self.label = f"{source.label}:{outlet_id}_{target.label}:{inlet_id}"
if label is not None:
self.label = label
if not isinstance(label, str):
msg = "Please provide the label as string."
logger.error(msg)
raise TypeError(msg)
# set specified values
self.source = source
self.source_id = outlet_id
self.target = target
self.target_id = inlet_id
# defaults
self.new_design = True
self.design_path = None
self.design = []
self.offdesign = []
self.local_design = False
self.local_offdesign = False
self.printout = True
# set default values for kwargs
self.property_data = self.get_parameters()
self.parameters = {
k: v for k, v in self.get_parameters().items()
if (
(hasattr(v, "func") and v.func is not None)
or (hasattr(v, "structure_matrix") and v.structure_matrix is not None)
)
}
self.state = dc_simple()
self.phase = dc_simple()
self.property_data0 = [x + '0' for x in self.property_data.keys()]
self.__dict__.update(self.property_data)
self.mixing_rule = None
msg = (
f"Created connection from {self.source.label} ({self.source_id}) "
f"to {self.target.label} ({self.target_id})."
)
logger.debug(msg)
self.set_attr(**kwargs)
def _reset_design(self, redesign):
for value in self.get_variables().values():
value.design = np.nan
self.fluid.design = {}
self.new_design = True
# switch connections to design mode
if redesign:
for var in self.design:
self.get_attr(var).is_set = True
for var in self.offdesign:
self.get_attr(var).is_set = False
[docs]
def set_attr(self, **kwargs):
r"""
Set, reset or unset attributes of a connection.
Parameters
----------
m : float, tespy.connections.connection.Ref
Mass flow specification.
m0 : float
Starting value specification for mass flow.
p : float, tespy.connections.connection.Ref
Pressure specification.
p0 : float
Starting value specification for pressure.
h : float, tespy.connections.connection.Ref
Enthalpy specification.
h0 : float
Starting value specification for enthalpy.
fluid : dict
Fluid composition specification.
fluid0 : dict
Starting value specification for fluid composition.
fluid_balance : boolean
Fluid balance equation specification.
x : float
Gas phase mass fraction specification.
T : float, tespy.connections.connection.Ref
Temperature specification.
Td_bp : float
Temperature difference to boiling point at pressure corresponding
pressure of this connection in K.
v : float
Volumetric flow specification.
state : str
State of the pure fluid on this connection: liquid ('l') or gaseous
('g').
design : list
List containing design parameters (stated as string).
offdesign : list
List containing offdesign parameters (stated as string).
design_path : str
Path to individual design case for this connection.
local_offdesign : boolean
Treat this connection in offdesign mode in a design calculation.
local_design : boolean
Treat this connection in design mode in an offdesign calculation.
printout : boolean
Include this connection in the network's results printout.
Note
----
- The fluid balance parameter applies a balancing of the fluid vector
on the specified connection to 100 %. For example, you have four
fluid components (a, b, c and d) in your vector, you set two of them
(a and b) and want the other two (components c and d) to be a result
of your calculation. If you set this parameter to True, the equation
(0 = 1 - a - b - c - d) will be applied.
- The specification of values for design and/or offdesign is used for
automatic switch from design to offdesign calculation: All parameters
given in 'design', e.g. :code:`design=['T', 'p']`, are unset in any
offdesign calculation, parameters given in 'offdesign' are set for
offdesign calculation.
- The property state is applied on pure fluids only. If you specify the
desired state of the fluid at a connection the convergence check will
adjust the enthalpy values of that connection for the first
iterations in order to meet the state requirement.
"""
# set specified values
for key in kwargs:
if key == 'label':
msg = 'Label can only be specified on instance creation.'
logger.error(msg)
raise TESPyConnectionError(msg)
elif 'fluid' in key:
self._fluid_specification(key, kwargs[key])
elif key in self.property_data or key in self.property_data0:
self._parameter_specification(key, kwargs[key])
elif key == 'state':
if kwargs[key] in ['l', 'g']:
self.state.set_attr(_val=kwargs[key], is_set=True)
elif kwargs[key] is None:
self.state.set_attr(is_set=False)
else:
msg = (
'Keyword argument "state" must either be '
'"l" or "g" or be None.'
)
logger.error(msg)
raise TypeError(msg)
# design/offdesign parameter list
elif key in ['design', 'offdesign']:
if not isinstance(kwargs[key], list):
msg = f"Please provide the {key} parameters as list!"
logger.error(msg)
raise TypeError(msg)
elif set(kwargs[key]).issubset(self.property_data.keys()):
self.__dict__.update({key: kwargs[key]})
else:
params = ', '.join(self.property_data.keys())
msg = (
"Available parameters for (off-)design specification "
f"are: {params}."
)
logger.error(msg)
raise ValueError(msg)
# design path
elif key == 'design_path':
self.__dict__.update({key: kwargs[key]})
self.new_design = True
# other boolean keywords
elif key in ['printout', 'local_design', 'local_offdesign']:
if not isinstance(kwargs[key], bool):
msg = ('Please provide the ' + key + ' as boolean.')
logger.error(msg)
raise TypeError(msg)
else:
self.__dict__.update({key: kwargs[key]})
elif key == "mixing_rule":
self.mixing_rule = kwargs[key]
# invalid keyword
else:
msg = f"Connection has no attribute {key}."
logger.error(msg)
raise KeyError(msg)
def _fluid_specification(self, key, value):
self._check_fluid_datatypes(key, value)
if key == "fluid":
# remove the old values in the fluid vector
self.fluid.val = dict()
self.fluid.is_set = set()
self.fluid.back_end = dict()
for fluid, fraction in value.items():
if "::" in fluid:
back_end, fluid = fluid.split("::")
else:
back_end = None
if fraction is None:
if fluid in self.fluid.is_set:
self.fluid.is_set.remove(fluid)
else:
self.fluid.val[fluid] = fraction
self.fluid.is_set.add(fluid)
self.fluid.back_end[fluid] = back_end
elif key == "fluid0":
self.fluid.val0.update(value)
elif key == "fluid_engines":
self.fluid.engine = value
elif key == "fluid_balance":
self.fluid_balance.is_set = value
else:
msg = f"Connections do not have an attribute named {key}"
logger.error(msg)
raise KeyError(msg)
def _check_fluid_datatypes(self, key, value):
if key == "fluid_balance":
if not isinstance(value, bool):
msg = "Datatype for 'fluid_balance' must be boolean."
logger.error(msg)
raise TypeError(msg)
else:
if not isinstance(value, dict):
msg = "Datatype for fluid vector specification must be dict."
logger.error(msg)
raise TypeError(msg)
def _serialize(self):
export = super()._serialize()
export[self.label].update({"state": self.state._serialize()})
return export
def _deserialize(self, data, all_connections):
arglist = [
_ for _ in data
if _ not in ["source", "source_id", "target", "target_id", "label", "fluid"]
and "ref" not in _
]
for arg in arglist:
container = self.get_attr(arg)
if isinstance(container, dc):
container.set_attr(**data[arg])
else:
self.set_attr(**{arg: data[arg]})
for f, engine in data["fluid"]["engine"].items():
data["fluid"]["engine"][f] = wrapper_registry.items[engine]
self.fluid.set_attr(**data["fluid"])
self._create_fluid_wrapper()
arglist_ref = [_ for _ in data if "ref" in _]
for arg in arglist_ref:
if len(data[arg]) > 0:
param = arg.replace("_ref", "")
ref = Ref(
all_connections[data[arg]["conn"]],
data[arg]["factor"],
data[arg]["delta"]
)
self.set_attr(**{param: ref})
def _serializable(self):
return super()._serializable() + ["mixing_rule"]
def _create_fluid_wrapper(self):
for fluid in self.fluid.val:
if fluid in self.fluid.wrapper:
continue
if fluid not in self.fluid.engine:
self.fluid.engine[fluid] = CoolPropWrapper
back_end = None
if fluid in self.fluid.back_end:
back_end = self.fluid.back_end[fluid]
else:
self.fluid.back_end[fluid] = None
self.fluid.wrapper[fluid] = self.fluid.engine[fluid](fluid, back_end)
def _precalc_guess_values(self):
"""
Precalculate enthalpy values for connections.
Precalculation is performed only if temperature, vapor mass fraction,
temperature difference to boiling point or phase is specified.
Parameters
----------
c : tespy.connections.connection.Connection
Connection to precalculate values for.
"""
# starting values for specified vapour content or temperature
if not self.h.is_var:
return
if not self.good_starting_values:
if self.x.is_set:
fluid = fp.single_fluid(self.fluid_data)
if self.p.is_var and self.p.val_SI > self.fluid.wrapper[fluid]._p_crit:
self.p.set_reference_val_SI(self.fluid.wrapper[fluid]._p_crit * 0.9)
self.h.set_reference_val_SI(
fp.h_mix_pQ(self.p.val_SI, self.x.val_SI, self.fluid_data, self.mixing_rule)
)
if self.T.is_set:
try:
self.h.set_reference_val_SI(
fp.h_mix_pT(self.p.val_SI, self.T.val_SI, self.fluid_data, self.mixing_rule)
)
except ValueError:
pass
# starting values for specified quality, specified subcooling/overheating
# and state specification. These should be recalculated even with
# good starting values, for example, when one exchanges enthalpy
# with boiling point temperature difference.
if (self.Td_bp.is_set or self.state.is_set or self.td_dew.is_set or self.td_bubble.is_set):
fluid = fp.single_fluid(self.fluid_data)
if self.p.is_var and self.p.val_SI > self.fluid.wrapper[fluid]._p_crit:
self.p.set_reference_val_SI(self.fluid.wrapper[fluid]._p_crit * 0.9)
if (
(self.Td_bp.val_SI > 0 and self.Td_bp.is_set)
or (self.state.val == 'g' and self.state.is_set)
or (self.td_dew.val_SI >= 0 and self.td_dew.is_set)
or (self.td_bubble.val_SI < 0 and self.td_bubble.is_set)
):
h = fp.h_mix_pQ(self.p.val_SI, 1, self.fluid_data)
if self.h.val_SI < h:
self.h.set_reference_val_SI(h + 1e3)
elif (
(self.Td_bp.val_SI < 0 and self.Td_bp.is_set)
or (self.state.val == 'l' and self.state.is_set)
or (self.td_bubble.val_SI >= 0 and self.td_bubble.is_set)
or (self.td_dew.val_SI < 0 and self.td_dew.is_set)
):
h = fp.h_mix_pQ(self.p.val_SI, 0, self.fluid_data)
if self.h.val_SI > h:
self.h.set_reference_val_SI(h - 1e3)
def _presolve(self):
if len(self.fluid.is_var) > 0:
return []
specifications = []
for name, container in self.property_data.items():
if name in ["p", "h", "T", "x", "Td_bp", "td_bubble", "td_dew", "T_dew", "T_bubble"]:
if container.is_set:
specifications += [name]
num_specs = len(specifications)
if num_specs > 2:
msg = (
"You have specified more than 2 parameters for the connection "
f"{self.label} with a known fluid composition: "
f"{', '.join(specifications)}. This overdetermines the state "
"of the fluid."
)
raise TESPyNetworkError(msg)
presolved_equations = []
if self.p.is_set:
if self.T_dew.is_set or self.T_bubble.is_set:
msg = (
"You cannot simultaneously specify pressure and dew or "
"bubble temperature as these are equivalent to setting "
"pressure."
)
raise TESPyNetworkError(msg)
elif self.p.is_var:
if self.T_dew.is_set:
self.p.set_reference_val_SI(p_dew_T(self.T_dew.val_SI, self.fluid_data))
self.p._potential_var = False
if "T_dew" in self._equation_set_lookup.values():
presolved_equations += ["T_dew"]
msg = f"Determined p by specified T_dew at {self.label}."
logger.info(msg)
elif self.T_bubble.is_set:
self.p.set_reference_val_SI(p_bubble_T(self.T_bubble.val_SI, self.fluid_data))
self.p._potential_var = False
if "T_bubble" in self._equation_set_lookup.values():
presolved_equations += ["T_bubble"]
msg = f"Determined p by specified T_bubble at {self.label}."
logger.info(msg)
if self.h.is_var and not self.p.is_var:
if self.T.is_set:
self.h.set_reference_val_SI(h_mix_pT(self.p.val_SI, self.T.val_SI, self.fluid_data, self.mixing_rule))
self.h._potential_var = False
if "T" in self._equation_set_lookup.values():
presolved_equations += ["T"]
msg = f"Determined h by known p and T at {self.label}."
logger.info(msg)
elif self.Td_bp.is_set:
T_sat = T_sat_p(self.p.val_SI, self.fluid_data)
self.h.set_reference_val_SI(h_mix_pT(self.p.val_SI, T_sat + self.Td_bp.val_SI, self.fluid_data))
self.h._potential_var = False
if "Td_bp" in self._equation_set_lookup.values():
presolved_equations += ["Td_bp"]
msg = f"Determined h by known p and Td_bp at {self.label}."
logger.info(msg)
elif self.td_bubble.is_set:
T_bubble = T_bubble_p(self.p.val_SI, self.fluid_data)
# fix for pure fluids: T cannot be too close to saturation
if abs(self.td_bubble.val_SI) <= 1e-3:
# at saturation we can use h_mix_pQ
self.h.set_reference_val_SI(h_mix_pQ(self.p.val_SI, 0, self.fluid_data))
else:
self.h.set_reference_val_SI(h_mix_pT(self.p.val_SI, T_bubble - self.td_bubble.val_SI, self.fluid_data))
self.h._potential_var = False
if "td_bubble" in self._equation_set_lookup.values():
presolved_equations += ["td_bubble"]
msg = f"Determined h by known p and td_bubble at {self.label}."
logger.info(msg)
elif self.td_dew.is_set:
T_dew = T_dew_p(self.p.val_SI, self.fluid_data)
# fix for pure fluids: T cannot be too close to saturation
if abs(self.td_dew.val_SI) <= 1e-3:
# at saturation we can use h_mix_pQ
self.h.set_reference_val_SI(h_mix_pQ(self.p.val_SI, 1, self.fluid_data))
else:
self.h.set_reference_val_SI(h_mix_pT(self.p.val_SI, T_dew + self.td_dew.val_SI, self.fluid_data))
self.h._potential_var = False
if "td_dew" in self._equation_set_lookup.values():
presolved_equations += ["td_dew"]
msg = f"Determined h by known p and td_bubble at {self.label}."
logger.info(msg)
elif self.x.is_set:
self.h.set_reference_val_SI(h_mix_pQ(self.p.val_SI, self.x.val_SI, self.fluid_data))
self.h._potential_var = False
if "x" in self._equation_set_lookup.values():
presolved_equations += ["x"]
msg = f"Determined h by known p and x at {self.label}."
logger.info(msg)
elif self.h.is_var and self.p.is_var:
if self.T.is_set and self.x.is_set:
self.p.set_reference_val_SI(p_sat_T(self.T.val_SI, self.fluid_data))
self.p._potential_var = False
self.h.set_reference_val_SI(h_mix_pQ(self.p.val_SI, self.x.val_SI, self.fluid_data))
self.h._potential_var = False
if "T" in self._equation_set_lookup.values():
presolved_equations += ["T"]
if "x" in self._equation_set_lookup.values():
presolved_equations += ["x"]
msg = f"Determined h and p by known T and x at {self.label}."
logger.info(msg)
elif self.T.is_set and self.Td_bp.is_set:
self.p.set_reference_val_SI(p_sat_T(self.T.val_SI - self.Td_bp.val_SI, self.fluid_data))
self.p._potential_var = False
self.h.set_reference_val_SI(h_mix_pT(self.p.val_SI, self.T.val_SI, self.fluid_data))
self.h._potential_var = False
if "T" in self._equation_set_lookup.values():
presolved_equations += ["T"]
if "Td_bp" in self._equation_set_lookup.values():
presolved_equations += ["Td_bp"]
msg = f"Determined h and p by known T and Td_bp at {self.label}."
logger.info(msg)
elif self.T.is_set and self.td_bubble.is_set:
self.p.set_reference_val_SI(p_bubble_T(self.T.val_SI + self.td_bubble.val_SI, self.fluid_data))
self.p._potential_var = False
if round(self.td_bubble.val_SI, 6) == 0:
self.h.set_reference_val_SI(h_mix_pQ(self.p.val_SI, 0, self.fluid_data))
else:
self.h.set_reference_val_SI(h_mix_pT(self.p.val_SI, self.T.val_SI, self.fluid_data))
self.h._potential_var = False
if "T" in self._equation_set_lookup.values():
presolved_equations += ["T"]
if "td_bubble" in self._equation_set_lookup.values():
presolved_equations += ["td_bubble"]
msg = f"Determined h and p by known T and td_bubble at {self.label}."
logger.info(msg)
elif self.T.is_set and self.td_dew.is_set:
self.p.set_reference_val_SI(p_dew_T(self.T.val_SI - self.td_dew.val_SI, self.fluid_data))
self.p._potential_var = False
if round(self.td_dew.val_SI, 6) == 0:
self.h.set_reference_val_SI(h_mix_pQ(self.p.val_SI, 1, self.fluid_data))
else:
self.h.set_reference_val_SI(h_mix_pT(self.p.val_SI, self.T.val_SI, self.fluid_data))
self.h._potential_var = False
if "T" in self._equation_set_lookup.values():
presolved_equations += ["T"]
if "td_dew" in self._equation_set_lookup.values():
presolved_equations += ["td_dew"]
msg = f"Determined h and p by known T and td_dew at {self.label}."
logger.info(msg)
presolved_equations = [
key for parameter in presolved_equations
for key, value in self._equation_set_lookup.items()
if value == parameter
]
return presolved_equations
def _partial_derivative_fluid(self, var, eq_num, value, dx, increment_filter=None, **kwargs):
result = _partial_derivative_vecvar(var, value, dx, increment_filter, **kwargs)
if result is not None:
self.jacobian[eq_num, var.J_col[dx]] = result
[docs]
def reset_fluid_vector(self):
self.fluid = dc_flu(
d=1e-5, description="Mass fractions of the fluid composition"
)
[docs]
def get_variables(self):
return {"m": self.m, "p": self.p, "h": self.h}
[docs]
def get_parameters(self):
return {
"m": dc_prop(
quantity="mass_flow",
description="mass flow of the fluid (system variable)"
),
"p": dc_prop(
quantity="pressure",
description="absolute pressure of the fluid (system variable)"
),
"h": dc_prop(
quantity="enthalpy",
description="mass specific enthalpy of the fluid (system variable)"
),
"T": dc_prop(
func=self.T_func,
deriv=self.T_deriv,
dependents=self.T_dependents,
num_eq=1,
quantity="temperature",
description="temperature of the fluid"
),
"T_bubble": dc_prop(
quantity="temperature",
description="determine pressure based on the provided bubble temperature of the fluid"
),
"T_dew": dc_prop(
quantity="temperature",
description="determine pressure based on the provided dew temperature of the fluid"
),
"v": dc_prop(
func=self.v_func, deriv=self.v_deriv,
dependents=self.v_dependents, num_eq=1,
quantity="volumetric_flow",
description="volumetric flow of the fluid"
),
"x": dc_prop(
func=self.x_func, deriv=self.x_deriv,
dependents=self.x_dependents, num_eq=1,
quantity="quality",
description="vapor mass fraction/quality of the two-phase fluid"
),
"td_dew": dc_prop(
func=self.td_dew_func,
dependents=self.td_dew_dependents,
num_eq=1,
quantity="temperature_difference",
description="superheating temperature difference to dew line temperature"
),
"td_bubble": dc_prop(
func=self.td_bubble_func, #deriv=self.td_bubble_deriv,
dependents=self.td_bubble_dependents,
num_eq=1,
quantity="temperature_difference",
description="subcooling temperature difference to bubble line temperature"
),
"m_ref": dc_ref(
num_eq=1,
func_params={"variable": "m"},
structure_matrix=self.primary_ref_structure_matrix,
quantity="mass_flow",
description="equation for linear relationship between two mass flows"
),
"p_ref": dc_ref(
num_eq=1,
func_params={"variable": "p"},
structure_matrix=self.primary_ref_structure_matrix,
quantity="pressure",
description="equation for linear relationship between two pressure values"
),
"h_ref": dc_ref(
num_eq=1,
func_params={"variable": "h"},
structure_matrix=self.primary_ref_structure_matrix,
quantity="enthalpy",
description="equation for linear relationship between two enthalpy values"
),
"T_ref": dc_ref(
func=self.T_ref_func,
deriv=self.T_ref_deriv,
dependents=self.T_ref_dependents,
num_eq=1,
quantity="temperature_difference", # reference has delta T
description="equation for linear relationship between two temperature values"
),
"v_ref": dc_ref(
func=self.v_ref_func,
deriv=self.v_ref_deriv,
dependents=self.v_ref_dependents,
num_eq=1,
quantity="volumetric_flow",
description="equation for linear relationship between two volumetric flows"
),
"vol": dc_prop(
quantity="specific_volume",
description="specific volume of the fluid (output only)"
),
"s": dc_prop(
quantity="entropy",
description="specific entropy of the fluid (output only)"
),
"fluid": dc_flu(
d=1e-5, description="mass fractions of the fluid composition (system variable)"
),
"fluid_balance": dc_simple(
func=self.fluid_balance_func,
deriv=self.fluid_balance_deriv,
_val=False, num_eq_sets=1,
dependents=self.fluid_balance_dependents,
description="apply an equation which closes the fluid balance with at least two unknown fluid mass fractions"
),
"Td_bp": dc_prop(
func=self.Td_bp_func, deriv=self.Td_bp_deriv,
dependents=self.Td_bp_dependents, num_eq=1,
quantity="temperature_difference",
description="temperature difference to boiling point (deprecated)"
)
}
[docs]
def get_fluid_data(self):
return {
fluid: {
"wrapper": self.fluid.wrapper[fluid],
"mass_fraction": self.fluid.val[fluid]
} for fluid in self.fluid.val
}
fluid_data = property(get_fluid_data)
[docs]
def primary_ref_structure_matrix(self, k, **kwargs):
r"""Create a linear relationship between two variables
.. math::
0 = var - \left(
var_\text{ref} \cdot \text{factor} + \text{delta}
\right)
Parameters
----------
k : int
equation set number to create the structure matrix for Network
preprocessing
"""
variable = kwargs["variable"]
ref = self.get_attr(f"{variable}_ref").ref
self._structure_matrix[k, self.get_attr(variable).sm_col] = 1
self._structure_matrix[k, ref.obj.get_attr(variable).sm_col] = -ref.factor
self._rhs[k] = ref.delta_SI
[docs]
def calc_T(self, T0=None):
if T0 is None:
T0 = self.T.val_SI
return T_mix_ph(self.p.val_SI, self.h.val_SI, self.fluid_data, self.mixing_rule, T0=T0)
[docs]
def T_func(self, **kwargs):
r"""Equation for temperature specification
.. math::
0 = T\left(p, h\right) - T
Returns
-------
float
residual value of equation
"""
return self.calc_T() - self.T.val_SI
[docs]
def T_deriv(self, increment_filter, k, **kwargs):
if _is_variable(self.p):
self.jacobian[k, self.p.J_col] = (
dT_mix_dph(self.p.val_SI, self.h.val_SI, self.fluid_data, self.mixing_rule, self.T.val_SI)
)
if _is_variable(self.h):
self.jacobian[k, self.h.J_col] = (
dT_mix_pdh(self.p.val_SI, self.h.val_SI, self.fluid_data, self.mixing_rule, self.T.val_SI)
)
[docs]
def T_dependents(self):
return [self.p, self.h]
[docs]
def T_ref_func(self, **kwargs):
r"""Equation for reference temperature specification :math:`T`
.. math::
0 = T\left(p, h\right) - \left[
T\left(p_\text{ref},h_\text{ref}\right) \cdot \text{factor} + \text{delta}
\right]
Returns
-------
float
residual value of equation
"""
ref = self.T_ref.ref
return self.calc_T() - (ref.obj.calc_T() * ref.factor + ref.delta_SI)
[docs]
def T_ref_deriv(self, increment_filter, k, **kwargs):
# first part of sum is identical to direct temperature specification
self.T_deriv(increment_filter, k, **kwargs)
ref = self.T_ref.ref
if _is_variable(ref.obj.p):
self.jacobian[k, ref.obj.p.J_col] = -(
dT_mix_dph(ref.obj.p.val_SI, ref.obj.h.val_SI, ref.obj.fluid_data, ref.obj.mixing_rule)
) * ref.factor
if _is_variable(ref.obj.h):
self.jacobian[k, ref.obj.h.J_col] = -(
dT_mix_pdh(ref.obj.p.val_SI, ref.obj.h.val_SI, ref.obj.fluid_data, ref.obj.mixing_rule)
) * ref.factor
[docs]
def T_ref_dependents(self):
ref = self.T_ref.ref
return self.T_dependents() + ref.obj.T_dependents()
[docs]
def calc_viscosity(self, T0=None):
try:
return viscosity_mix_ph(self.p.val_SI, self.h.val_SI, self.fluid_data, self.mixing_rule, T0=T0)
except NotImplementedError:
return np.nan
[docs]
def calc_vol(self, T0=None):
try:
return v_mix_ph(self.p.val_SI, self.h.val_SI, self.fluid_data, self.mixing_rule, T0=T0)
except NotImplementedError:
return np.nan
[docs]
def v_func(self, **kwargs):
r"""Equation for volumetric flow specification :math:`\dot V`
.. math::
0 = \dot m \cdot vol\left(p, h\right) - \dot V
Returns
-------
float
residual value of equation
"""
return self.calc_vol(T0=self.T.val_SI) * self.m.val_SI - self.v.val_SI
[docs]
def v_deriv(self, increment_filter, k, **kwargs):
if _is_variable(self.m):
self._partial_derivative(self.m, k, self.calc_vol(T0=self.T.val_SI))
if _is_variable(self.p):
self._partial_derivative(
self.p, k,
dv_mix_dph(self.p.val_SI, self.h.val_SI, self.fluid_data)
* self.m.val_SI
)
if _is_variable(self.h):
self._partial_derivative(
self.h, k,
dv_mix_pdh(self.p.val_SI, self.h.val_SI, self.fluid_data)
* self.m.val_SI
)
[docs]
def v_dependents(self):
return [self.m, self.p, self.h]
[docs]
def v_ref_func(self, **kwargs):
r"""Equation for reference volumetric flow specification
.. math::
0 = \dot m \cdot vol\left(p, h\right) - \left[
\dot m_\text{ref} \cdot vol\left(p_\text{ref},h_\text{ref}\right)
\cdot \text{factor} + \text{delta}
\right]
Returns
-------
float
residual value of equation
"""
ref = self.v_ref.ref
return (
self.calc_vol(T0=self.T.val_SI) * self.m.val_SI
- (
ref.obj.calc_vol(T0=ref.obj.T.val_SI) * ref.obj.m.val_SI
* ref.factor + ref.delta_SI
)
)
[docs]
def v_ref_deriv(self, increment_filter, k, **kwargs):
# first part of sum is identical to direct volumetric flow specification
self.v_deriv(increment_filter, k, **kwargs)
ref = self.v_ref.ref
if ref.obj.m.is_var:
self.jacobian[k, ref.obj.m.J_col] = -(
ref.obj.calc_vol(T0=ref.obj.T.val_SI) * ref.factor
)
if ref.obj.p.is_var:
self.jacobian[k, ref.obj.p.J_col] = -(
dv_mix_dph(ref.obj.p.val_SI, ref.obj.h.val_SI, ref.obj.fluid_data)
* ref.obj.m.val_SI * ref.factor
)
if ref.obj.h.is_var:
self.jacobian[k, ref.obj.h.J_col] = -(
dv_mix_pdh(ref.obj.p.val_SI, ref.obj.h.val_SI, ref.obj.fluid_data)
* ref.obj.m.val_SI * ref.factor
)
[docs]
def v_ref_dependents(self):
ref = self.v_ref.ref
return self.v_dependents() + ref.obj.v_dependents()
[docs]
def calc_x(self):
try:
return Q_mix_ph(self.p.val_SI, self.h.val_SI, self.fluid_data)
except NotImplementedError:
return np.nan
[docs]
def x_func(self, **kwargs):
r"""Equation for vapor mass fraction specification :math:`x`
.. math::
0 = h - h\left(p,x\right)
Returns
-------
float
residual value of equation
"""
# saturated steam fraction
return (
self.h.val_SI
- h_mix_pQ(self.p.val_SI, self.x.val_SI, self.fluid_data)
)
[docs]
def x_deriv(self, increment_filter, k, **kwargs):
if self.p.is_var:
self.jacobian[k, self.p.J_col] = -dh_mix_dpQ(self.p.val_SI, self.x.val_SI, self.fluid_data)
if self.h.is_var:
self.jacobian[k, self.h.J_col] = 1
[docs]
def x_dependents(self):
return [self.p, self.h]
[docs]
def calc_T_sat(self):
try:
return T_sat_p(self.p.val_SI, self.fluid_data)
except NotImplementedError:
return np.nan
[docs]
def calc_Td_bp(self):
try:
return self.calc_T() - T_sat_p(self.p.val_SI, self.fluid_data)
except NotImplementedError:
return np.nan
[docs]
def calc_td_dew(self):
try:
return self.calc_T() - T_dew_p(self.p.val_SI, self.fluid_data)
except NotImplementedError:
return np.nan
[docs]
def calc_td_bubble(self):
try:
return T_bubble_p(self.p.val_SI, self.fluid_data) - self.calc_T()
except NotImplementedError:
return np.nan
[docs]
def Td_bp_func(self, **kwargs):
# temperature difference to boiling point
return self.calc_Td_bp() - self.Td_bp.val_SI
[docs]
def Td_bp_deriv(self, increment_filter, k, **kwargs):
f = self.Td_bp_func
self._partial_derivative(self.p, k, f)
self._partial_derivative(self.h, k, f)
[docs]
def Td_bp_dependents(self):
return [self.p, self.h]
[docs]
def td_dew_func(self, **kwargs):
r"""Equation for fixed bubble temperature subcooling :math:`\Delta T`
.. math::
0 = T_\text{dew}\left(p\right) - T\left(p,h\right) - \Delta T
Returns
-------
float
residual value of equation
"""
return self.calc_td_dew() - self.td_dew.val_SI
[docs]
def td_dew_dependents(self):
return [self.p, self.h]
[docs]
def td_bubble_func(self, **kwargs):
r"""Equation for fixed dew temperature superheating :math:`\Delta T`
.. math::
0 = T\left(p,h\right) - T_\text{bubble}\left(p\right) - \Delta T
Returns
-------
float
residual value of equation
"""
return self.calc_td_bubble() - self.td_bubble.val_SI
[docs]
def td_bubble_dependents(self):
return [self.p, self.h]
[docs]
def fluid_balance_func(self, **kwargs):
r"""Equation for fluid vector balance
.. math::
0 = 1 - \sum x_\text{fluid_i}
Returns
-------
float
residual value of equation
"""
residual = 1 - sum(self.fluid.val[f] for f in self.fluid.is_set)
residual -= sum(self.fluid.val[f] for f in self.fluid.is_var)
return residual
[docs]
def fluid_balance_deriv(self, increment_filter, k, **kwargs):
for f in self.fluid.is_var:
self.jacobian[k, self.fluid.J_col[f]] = -self.fluid.val[f]
[docs]
def fluid_balance_dependents(self):
return {
"scalars": [[]],
"vectors": [{self.fluid: self.fluid.is_var}]
}
[docs]
def calc_s(self):
try:
return s_mix_ph(self.p.val_SI, self.h.val_SI, self.fluid_data, self.mixing_rule, T0=self.T.val_SI)
except NotImplementedError:
return np.nan
[docs]
def calc_Q(self):
return Q_mix_ph(self.p.val_SI, self.h.val_SI, self.fluid_data)
[docs]
def calc_phase(self):
try:
return phase_mix_ph(self.p.val_SI, self.h.val_SI, self.fluid_data)
except NotImplementedError:
return np.nan
[docs]
def calc_results(self, units):
self.T.val_SI = self.calc_T()
fluid = single_fluid(self.fluid_data)
_converged = True
if fluid is None:
# this is a mixture
h_from_T = h_mix_pT(self.p.val_SI, self.T.val_SI, self.fluid_data, self.mixing_rule)
if (
abs(h_from_T - self.h.val_SI) > ERR ** .5 and
abs((h_from_T - self.h.val_SI) / self.h.val_SI) > ERR ** .5
):
self.T.val_SI = np.nan
self.vol.val_SI = np.nan
self.v.val_SI = np.nan
self.s.val_SI = np.nan
msg = (
"Could not find a feasible value for mixture temperature "
f"at connection {self.label}. The values of temperature, "
"specific volume and entropy are set to nan."
)
logger.error(msg)
_converged = False
else:
_, Tmax = get_mixture_temperature_range(self.fluid_data)
if self.T.val_SI > Tmax:
msg = (
"The temperature value of the mixture is above the "
"upper temperature limit of a mixture component. The "
"resulting temperature may have larger deviations "
"compared to the tolerance specified in the "
"corresponding substance property library."
)
logger.warning(msg)
else:
# these are pure fluids
# two-phase properties are calculated based on pressure
if self.p.val_SI < self.fluid.wrapper[fluid]._p_crit:
try:
self.x.val_SI = self.calc_x()
except ValueError:
self.x.val_SI = np.nan
try:
self.Td_bp.val_SI = self.calc_Td_bp()
except ValueError:
self.Td_bp.val_SI = np.nan
try:
self.td_dew.val_SI = self.calc_td_dew()
except ValueError:
self.td_dew.val_SI = np.nan
try:
self.td_bubble.val_SI = self.calc_td_bubble()
except ValueError:
self.td_bubble.val_SI = np.nan
try:
self.phase.val = self.calc_phase()
except ValueError:
self.phase.val = "phase not recognized"
else:
self.x.val_SI = np.nan
self.Td_bp.val_SI = np.nan
self.phase.val = "phase not recognized"
if _converged:
self.vol.val_SI = self.calc_vol()
self.v.val_SI = self.vol.val_SI * self.m.val_SI
self.s.val_SI = self.calc_s()
for prop in self._result_attributes():
param = self.get_attr(prop)
result = param._get_val_from_SI(units)
converged = np.isclose(result.magnitude, param.val, 1e-3, 1e-3)
if param.is_set and not converged:
_converged = False
msg = (
"The simulation converged but the calculated result "
f"{result} for the fixed input parameter {prop} of "
f"connection {self.label} is not equal to the originally "
f"specified value of {param.val}. Usually, this can "
"happen, when a method internally manipulates the "
"associated equation during iteration in order to allow "
"progress in situations, when the equation is otherwise "
"not well defined for the current values of the "
"variables, e.g. in case a negative root would need to be "
"evaluated. Often, this can happen during the first "
"iterations and then will resolve itself as convergence "
"progresses. In this case it did not, meaning convergence "
"was not actually achieved."
)
logger.warning(msg)
else:
if not param.is_set:
param.set_val_from_SI(units)
self.m.set_val0_from_SI(units)
self.p.set_val0_from_SI(units)
self.h.set_val0_from_SI(units)
self.fluid.val0 = self.fluid.val.copy()
return _converged
def _set_design_params(self, data, units):
for var in self._result_attributes():
if var not in data:
continue
unit = data[f"{var}_unit"]
if unit == "C":
if var == "T":
unit = "degC"
elif var == "Td_bp":
unit = "delta_degC"
elif "kgK" in unit:
unit = unit.replace("kgK", "kg/K")
elif unit == "-":
unit = "1"
param = self.get_attr(var)
param.design = units.ureg.Quantity(
float(data[var]),
unit
).to(SI_UNITS[param.quantity]).magnitude
for fluid in self.fluid.val:
self.fluid.design[fluid] = float(data[fluid])
def _set_starting_values(self, data, units):
for prop in self.get_variables():
var = self.get_attr(prop)
var.val0 = units.ureg.Quantity(
float(data[prop]),
data[f"{prop}_unit"]
)
for fluid in self.fluid.is_var:
self.fluid.val[fluid] = float(data[fluid])
self.fluid.val0[fluid] = float(self.fluid.val[fluid])
@classmethod
def _result_attributes(cls):
return ["m", "p", "h", "T", "v", "s", "vol", "x", "Td_bp", "td_dew", "td_bubble"]
@classmethod
def _get_result_cols(cls, all_fluids):
return [
col for prop in cls._result_attributes()
for col in [prop, f"{prop}_unit"]
] + list(all_fluids) + ['phase']
@classmethod
def _print_attributes(cls):
return ["m", "p", "h", "T", "x", "phase"]
[docs]
def collect_results(self, all_fluids):
return [
_ for key in self._result_attributes()
for _ in [self.get_attr(key).val, self.get_attr(key).unit]
] + [
self.fluid.val[fluid] if fluid in self.fluid.val else np.nan
for fluid in all_fluids
] + [
self.phase.val
]
def _adjust_to_property_limits(self, nw):
r"""
Check for invalid fluid property values.
TODO: The network passed to this method should be putting the value
limits to the connections in the preprocessing, then it can be
omitted here.
"""
fl = fp.single_fluid(self.fluid_data)
# pure fluid
if fl is not None:
# pressure
if self.p.is_var:
self._adjust_pressure(fl)
# enthalpy
if self.h.is_var:
self._adjust_enthalpy(fl)
# two-phase related
if (self.Td_bp.is_set or self.state.is_set or self.x.is_set or self.td_bubble.is_set or self.td_dew.is_set) and self.it < 10:
self._adjust_to_two_phase(fl)
# mixture
elif self.it < 5 and not self.good_starting_values:
# pressure
if self.p.is_var:
if self.p.val_SI <= nw.p_range_SI[0]:
self.p.set_reference_val_SI(nw.p_range_SI[0])
logger.debug(self._property_range_message('p'))
elif self.p.val_SI >= nw.p_range_SI[1]:
self.p.set_reference_val_SI(nw.p_range_SI[1])
logger.debug(self._property_range_message('p'))
# enthalpy
if self.h.is_var:
if self.h.val_SI < nw.h_range_SI[0]:
self.h.set_reference_val_SI(nw.h_range_SI[0])
logger.debug(self._property_range_message('h'))
elif self.h.val_SI > nw.h_range_SI[1]:
self.h.set_reference_val_SI(nw.h_range_SI[1])
logger.debug(self._property_range_message('h'))
# temperature
if self.T.is_set:
self._adjust_to_temperature_limits()
# mass flow
if self.m.is_var:
if self.m.val_SI <= nw.m_range_SI[0]:
self.m.set_reference_val_SI(nw.m_range_SI[0])
logger.debug(self._property_range_message('m'))
elif self.m.val_SI >= nw.m_range_SI[1]:
self.m.set_reference_val_SI(nw.m_range_SI[1])
logger.debug(self._property_range_message('m'))
def _adjust_pressure(self, fluid):
if self.p.val_SI > self.fluid.wrapper[fluid]._p_max:
self.p.set_reference_val_SI(self.fluid.wrapper[fluid]._p_max)
logger.debug(self._property_range_message('p'))
elif self.p.val_SI < self.fluid.wrapper[fluid]._p_min:
try:
# if this works, the temperature is higher than the minimum
# temperature, we can access pressure values below minimum
# pressure
self.fluid.wrapper[fluid].T_ph(self.p.val_SI, self.h.val_SI)
except ValueError:
self.p.set_reference_val_SI(self.fluid.wrapper[fluid]._p_min + 1e1)
logger.debug(self._property_range_message('p'))
def _adjust_enthalpy(self, fluid):
# enthalpy
try:
hmin = self.fluid.wrapper[fluid].h_pT(
self.p.val_SI, self.fluid.wrapper[fluid]._T_min + 1e-1
)
except ValueError:
f = 1.05
hmin = self.fluid.wrapper[fluid].h_pT(
self.p.val_SI, self.fluid.wrapper[fluid]._T_min * f
)
if self.h.val_SI < hmin:
if hmin < 0:
self.h.set_reference_val_SI(hmin * 0.9999)
else:
self.h.set_reference_val_SI(hmin * 1.0001)
logger.debug(self._property_range_message('h'))
else:
T = self.fluid.wrapper[fluid]._T_max
# T_max depends on pressure for incompressibles
while True:
try:
hmax = self.fluid.wrapper[fluid].h_pT(self.p.val_SI, T)
break
except ValueError as e:
T *= 0.99
if T < self.fluid.wrapper[fluid]._T_min:
raise ValueError(e) from e
if self.h.val_SI > hmax:
self.h.set_reference_val_SI(hmax * 0.9999)
logger.debug(self._property_range_message('h'))
def _adjust_to_two_phase(self, fluid):
if self.p.val_SI > self.fluid.wrapper[fluid]._p_crit:
self.p.set_reference_val_SI(self.fluid.wrapper[fluid]._p_crit * 0.9)
# this is supposed to never be accessed with INCOMP backend but it is
# not enforced. With INCOMP backend this causes a crash
if self.Td_bp.is_set or self.state.is_set:
if self.Td_bp.val_SI > 0 or self.state.val == 'g':
h = self.fluid.wrapper[fluid].h_pQ(self.p.val_SI, 1)
if self.h.val_SI < h:
self.h.set_reference_val_SI(h + 1e3)
logger.debug(self._property_range_message('h'))
else:
h = self.fluid.wrapper[fluid].h_pQ(self.p.val_SI, 0)
if self.h.val_SI > h:
self.h.set_reference_val_SI(h - 1e3)
logger.debug(self._property_range_message('h'))
elif self.td_bubble.is_set:
h = self.fluid.wrapper[fluid].h_pQ(self.p.val_SI, 0)
if self.td_bubble.val_SI >= 0:
if self.h.val_SI > h:
self.h.set_reference_val_SI(h - 1e3)
else:
if self.h.val_SI < h:
self.h.set_reference_val_SI(h + 1e3)
elif self.td_dew.is_set:
h = self.fluid.wrapper[fluid].h_pQ(self.p.val_SI, 1)
if self.td_dew.val_SI >= 0:
if self.h.val_SI < h:
self.h.set_reference_val_SI(h + 1e3)
else:
if self.h.val_SI > h:
self.h.set_reference_val_SI(h - 1e3)
elif self.x.is_set:
h = self.fluid.wrapper[fluid].h_pQ(self.p.val_SI, self.x.val_SI)
self.h.set_reference_val_SI(h)
def _adjust_to_temperature_limits(self):
r"""
Check if temperature is within user specified limits.
Parameters
----------
c : tespy.connections.connection.Connection
Connection to check fluid properties.
"""
Tmin = max(
[w._T_min for f, w in self.fluid.wrapper.items() if self.fluid.val[f] > ERR]
) * 1.01
Tmax = min(
[w._T_max for f, w in self.fluid.wrapper.items() if self.fluid.val[f] > ERR]
) * 0.99
hmin = h_mix_pT(self.p.val_SI, Tmin, self.fluid_data, self.mixing_rule)
hmax = h_mix_pT(self.p.val_SI, Tmax, self.fluid_data, self.mixing_rule)
if self.h.val_SI < hmin:
self.h.val_SI = hmin
logger.debug(self._property_range_message('h'))
if self.h.val_SI > hmax:
self.h.val_SI = hmax
logger.debug(self._property_range_message('h'))
def _property_range_message(self, prop):
r"""
Return debugging message for fluid property range adjustments.
Parameters
----------
c : tespy.connections.connection.Connection
Connection to check fluid properties.
prop : str
Fluid property.
Returns
-------
msg : str
Debugging message.
"""
msg = (
f"{fpd[prop]['text'][0].upper()}{fpd[prop]['text'][1:]} out of "
f"fluid property range at connection {self.label}, adjusting value "
f"to {self.get_attr(prop).val_SI} {fpd[prop]['SI_unit']}."
)
return msg
def _get_physical_exergy(self, pamb, Tamb):
r"""
Get the value of a connection's specific physical exergy.
Parameters
----------
p0 : float
Ambient pressure p0 / Pa.
T0 : float
Ambient temperature T0 / K.
Note
----
.. math::
e^\mathrm{PH} = e^\mathrm{T} + e^\mathrm{M}\\
E^\mathrm{T} = \dot{m} \cdot e^\mathrm{T}\\
E^\mathrm{M} = \dot{m} \cdot e^\mathrm{M}\\
E^\mathrm{PH} = \dot{m} \cdot e^\mathrm{PH}
"""
self.ex_therm, self.ex_mech = fp.functions.calc_physical_exergy(
self.h.val_SI, self.s.val_SI, self.p.val_SI, pamb, Tamb,
self.fluid_data, self.mixing_rule, self.T.val_SI
)
self.Ex_therm = self.ex_therm * self.m.val_SI
self.Ex_mech = self.ex_mech * self.m.val_SI
self.ex_physical = self.ex_therm + self.ex_mech
self.Ex_physical = self.m.val_SI * self.ex_physical
def _get_chemical_exergy(self, pamb, Tamb, Chem_Ex):
r"""
Get the value of a connection's specific chemical exergy.
Parameters
----------
p0 : float
Ambient pressure p0 / Pa.
T0 : float
Ambient temperature T0 / K.
Chem_Ex : dict
Lookup table for standard specific chemical exergy.
Note
----
.. math::
E^\mathrm{CH} = \dot{m} \cdot e^\mathrm{CH}
"""
if Chem_Ex is None:
self.ex_chemical = 0
else:
self.ex_chemical = fp.functions.calc_chemical_exergy(
pamb, Tamb, self.fluid_data, Chem_Ex, self.mixing_rule,
self.T.val_SI
)
self.Ex_chemical = self.m.val_SI * self.ex_chemical
[docs]
class Ref:
r"""
A reference object is used to reference (unknown) properties of connections
to other connections.
For example, reference the mass flow of one connection :math:`\dot{m}` to
another mass flow :math:`\dot{m}_{ref}`:
.. math::
\dot{m} = \dot{m}_\mathrm{ref} \cdot \mathrm{factor} + \mathrm{delta}
Parameters
----------
obj : tespy.connections.connection.Connection
Connection to be referenced.
factor : float
Factor to multiply specified property with.
delta : float
Delta to add after multiplication.
"""
def __init__(self, ref_obj, factor, delta):
if not isinstance(ref_obj, Connection):
msg = 'First parameter must be object of type connection.'
logger.error(msg)
raise TypeError(msg)
if not (isinstance(factor, int) or isinstance(factor, float)):
msg = 'Second parameter must be of type int or float.'
logger.error(msg)
raise TypeError(msg)
if not (isinstance(delta, int) or isinstance(delta, float)):
msg = 'Thrid parameter must be of type int or float.'
logger.error(msg)
raise TypeError(msg)
self.obj = ref_obj
self.factor = factor
self.delta = delta
self.delta_SI = None
msg = (
f"Created reference object with factor {self.factor} and delta "
f"{self.delta} referring to connection {ref_obj.label}"
)
logger.debug(msg)
[docs]
def get_attr(self, key):
r"""
Get the value of a reference attribute.
Parameters
----------
key : str
The attribute you want to retrieve.
Returns
-------
out :
Specified attribute.
"""
if key in self.__dict__:
return self.__dict__[key]
else:
msg = f"Reference has no attribute '{key}'."
logger.error(msg)
raise KeyError(msg)