tespy.networks package¶
tespy.networks.network module¶
Module for tespy network class.
The network is the container for every TESPy simulation. The network class automatically creates the system of equations describing topology and parametrization of a specific model and solves it.
This file is part of project TESPy (github.com/oemof/tespy). It’s copyrighted by the contributors recorded in the version control history of the file, available from its original location tespy/networks/networks.py
SPDX-License-Identifier: MIT
- class tespy.networks.network.Network(**kwargs)[source]¶
Bases:
objectClass component is the base class of all TESPy components.
- Parameters:
iterinfo (boolean) – Print convergence progress to console.
h_range (list) – List with minimum and maximum values for enthalpy value range.
m_range (list) – List with minimum and maximum values for mass flow value range.
p_range (list) – List with minimum and maximum values for pressure value range.
Note
Units are specified via the
Network.units.set_defaultsinterface. The specification is optional and will use SI units by default.Range specification is optional, too. The value range is used to stabilize the newton algorithm. For more information see the “getting started” section in the online-documentation.
Example
Basic example for a setting up a
tespy.networks.network.Networkobject.Standard value for iterinfo is
True. This will print out convergence progress to the console. You can stop the printouts by setting this property toFalse.>>> from tespy.networks import Network >>> mynetwork = Network() >>> mynetwork.units.set_defaults(**{ ... "pressure": "bar", "temperature": "degC" ... }) >>> mynetwork.set_attr(p_range=[1, 10]) >>> type(mynetwork) <class 'tespy.networks.network.Network'> >>> mynetwork.set_attr(iterinfo=False) >>> mynetwork.iterinfo False >>> mynetwork.set_attr(iterinfo=True) >>> mynetwork.iterinfo True
A simple network consisting of a source, a pipe and a sink. This example shows how the printout parameter can be used. We specify
printout=Falsefor both connections, the pipe as well as the heat bus. Therefore the.print_results()method should not print any results.>>> from tespy.networks import Network >>> from tespy.components import Source, Sink, Pipe, PowerSink >>> from tespy.connections import Connection, PowerConnection >>> nw = Network() >>> nw.units.set_defaults(**{ ... "pressure": "bar", "temperature": "degC" ... }) >>> so = Source('source') >>> si = Sink('sink') >>> p = Pipe('pipe', Q=0, pr=0.95, printout=False, power_connector_location="outlet") >>> h = PowerSink('heat to ambient') >>> a = Connection(so, 'out1', p, 'in1') >>> b = Connection(p, 'out1', si, 'in1') >>> nw.add_conns(a, b) >>> a.set_attr(fluid={'CH4': 1}, T=30, p=10, m=10, printout=False) >>> b.set_attr(printout=False) >>> e = PowerConnection(p, 'heat', h, 'power', printout=False) >>> nw.add_conns(e) >>> nw.set_attr(iterinfo=False) >>> nw.solve('design') >>> nw.print_results()
- add_busses(*args)[source]¶
Add one or more busses to the network.
- Parameters:
b (tespy.connections.bus.Bus) – The bus to be added to the network, bus objects bi
add_busses(b1, b2, b3, ...).
- add_conns(*args)[source]¶
Add one or more connections to the network.
- Parameters:
c (tespy.connections.connection.Connection) – The connection to be added to the network, connections objects ci
add_conns(c1, c2, c3, ...).
- add_subsystems(*args)[source]¶
Add one or more subsystems to the network.
- Parameters:
c (tespy.components.subsystem.Subsystem) – The subsystem to be added to the network, subsystem objects si
network.add_subsystems(s1, s2, s3, ...).
- add_ude(*args)[source]¶
Add a user defined function to the network.
- Parameters:
c (tespy.tools.helpers.UserDefinedEquation) – The objects to be added to the network, UserDefinedEquation objects ci
add_ude(c1, c2, c3, ...).
- check_busses(b)[source]¶
Checksthe busses to be added for type, duplicates and identical labels.
- Parameters:
b (tespy.connections.bus.Bus) – The bus to be checked.
- property converged¶
- del_busses(*args)[source]¶
Remove one or more busses from the network.
- Parameters:
b (tespy.connections.bus.Bus) – The bus to be removed from the network, bus objects bi
add_busses(b1, b2, b3, ...).
- del_conns(*args)[source]¶
Remove one or more connections from the network.
- Parameters:
c (tespy.connections.connection.Connection) – The connection to be removed from the network, connections objects ci
del_conns(c1, c2, c3, ...).
- del_subsystems(*args)[source]¶
Delete one or more subsystems from the network.
- Parameters:
c (tespy.components.subsystem.Subsystem) – The subsystem to be deleted from the network, subsystem objects si
network.del_subsystems(s1, s2, s3, ...).
- del_ude(*args)[source]¶
Remove a user defined function from the network.
- Parameters:
c (tespy.tools.helpers.UserDefinedEquation) – The objects to be deleted from the network, UserDefinedEquation objects ci
del_ude(c1, c2, c3, ...).
- export(json_file_path=None)[source]¶
Export the parametrization and structure of the Network instance
- Parameters:
json_file_path (str, optional) – Path for exporting to filesystem. If path is None, the data are only returned and not written to the filesystem, by default None.
- Returns:
dict – Parametrization and structure of the Network instance.
- classmethod from_json(json_file_path)[source]¶
Load a network from a base path.
- Parameters:
path (str) – The path to the network data.
- Returns:
nw (tespy.networks.network.Network) – TESPy networks object.
Note
If you export the network structure of an existing TESPy network, it will be saved to the path you specified. The structure of the saved data in that path is the structure you need to provide in the path for loading the network.
The structure of the path must be as follows:
Folder: path (e.g. ‘mynetwork’)
Component.json
Connection.json
Bus.json
Network.json
Example
Create a network and export it. This is followed by loading the network from the exported json file. All network information stored will be passed to a new network object. Components, connections and busses will be accessible by label. The following example setup is simple gas turbine setup with compressor, combustion chamber and turbine. The fuel is fed from a pipeline and throttled to the required pressure while keeping the temperature at a constant value.
>>> from tespy.components import ( ... Sink, Source, CombustionChamber, TurboCompressor, Turbine, ... SimpleHeatExchanger, PowerBus, PowerSink, Generator ... ) >>> from tespy.connections import Connection, Ref, PowerConnection >>> from tespy.networks import Network >>> import os >>> nw = Network(iterinfo=False) >>> nw.units.set_defaults(**{ ... "pressure": "bar", "temperature": "degC", "enthalpy": "kJ/kg", ... "power": "MW" ... }) >>> air = Source('air') >>> f = Source('fuel') >>> compressor = TurboCompressor('compressor') >>> combustion = CombustionChamber('combustion') >>> turbine = Turbine('turbine') >>> preheater = SimpleHeatExchanger('fuel preheater') >>> si = Sink('sink') >>> shaft = PowerBus('shaft', num_in=1, num_out=2) >>> generator = Generator('generator') >>> grid = PowerSink('grid') >>> c1 = Connection(air, 'out1', compressor, 'in1', label='c01') >>> c2 = Connection(compressor, 'out1', combustion, 'in1', label='c02') >>> c11 = Connection(f, 'out1', preheater, 'in1', label='c11') >>> c12 = Connection(preheater, 'out1', combustion, 'in2', label='c12') >>> c3 = Connection(combustion, 'out1', turbine, 'in1', label='c03') >>> c4 = Connection(turbine, 'out1', si, 'in1', label='c04') >>> nw.add_conns(c1, c2, c11, c12, c3, c4) >>> e1 = PowerConnection(turbine, 'power', shaft, 'power_in1', label='e1') >>> e2 = PowerConnection(shaft, 'power_out1', compressor, 'power', label='e2') >>> e3 = PowerConnection(shaft, 'power_out2', generator, 'power_in', label='e3') >>> e4 = PowerConnection(generator, 'power_out', grid, 'power', label='e4') >>> nw.add_conns(e1, e2, e3, e4)
Specify component and connection properties. The intlet pressure at the compressor and the outlet pressure after the turbine are identical. For the compressor, the pressure ratio and isentropic efficiency are design parameters. A compressor map (efficiency vs. mass flow and pressure rise vs. mass flow) is selected for the compressor. Fuel is Methane.
>>> compressor.set_attr( ... pr=10, eta_s=0.88, design=['eta_s', 'pr'], ... offdesign=['char_map_eta_s', 'char_map_pr'] ... ) >>> turbine.set_attr( ... eta_s=0.9, design=['eta_s'], ... offdesign=['eta_s_char', 'cone'] ... ) >>> combustion.set_attr(lamb=2) >>> c1.set_attr( ... fluid={'N2': 0.7556, 'O2': 0.2315, 'Ar': 0.0129}, T=25, p=1 ... ) >>> c11.set_attr(fluid={'CH4': 0.96, 'CO2': 0.04}, T=25, p=40) >>> c12.set_attr(T=25) >>> c4.set_attr(p=Ref(c1, 1, 0)) >>> generator.set_attr(eta=1)
For a stable start, we specify the fresh air mass flow.
>>> c1.set_attr(m=3) >>> nw.solve('design') >>> nw.assert_convergence()
The total power output is set to 1 MW, electrical or mechanical efficiencies are not considered in this example. The documentation example in class
tespy.connections.bus.Busprovides more information on efficiencies of generators, for instance.>>> combustion.set_attr(lamb=None) >>> c3.set_attr(T=1100) >>> c1.set_attr(m=None) >>> e4.set_attr(E=1) >>> nw.solve('design') >>> nw.assert_convergence() >>> nw.save('design_state.json') >>> _ = nw.export('exported_nwk.json') >>> mass_flow = round(nw.get_conn('c01').m.val_SI, 1) >>> compressor.set_attr(igva='var') >>> nw.solve('offdesign', design_path='design_state.json') >>> round(turbine.eta_s.val, 1) 0.9 >>> e4.set_attr(E=0.75) >>> nw.solve('offdesign', design_path='design_state.json') >>> nw.assert_convergence() >>> eta_s_t = round(turbine.eta_s.val, 3) >>> igva = round(compressor.igva.val, 3) >>> eta_s_t 0.898 >>> igva 20.138
The designed network is exported to the path ‘exported_nwk’. Now import the network and recalculate. Check if the results match with the previous calculation in design and offdesign case.
>>> imported_nwk = Network.from_json('exported_nwk.json') >>> imported_nwk.set_attr(iterinfo=False) >>> imported_nwk.solve('design') >>> imported_nwk.lin_dep False >>> round(imported_nwk.get_conn('c01').m.val_SI, 1) == mass_flow True >>> round(imported_nwk.get_comp('turbine').eta_s.val, 3) 0.9 >>> imported_nwk.get_comp('compressor').set_attr(igva='var') >>> imported_nwk.solve('offdesign', design_path='design_state.json') >>> round(imported_nwk.get_comp('turbine').eta_s.val, 3) 0.9 >>> imported_nwk.get_conn('e4').set_attr(E=0.75) >>> imported_nwk.solve('offdesign', design_path='design_state.json') >>> round(imported_nwk.get_comp('turbine').eta_s.val, 3) == eta_s_t True >>> round(imported_nwk.get_comp('compressor').igva.val, 3) == igva True >>> os.remove('exported_nwk.json') >>> os.remove('design_state.json')
- get_attr(key)[source]¶
Get the value of a network attribute.
- Parameters:
key (str) – The attribute you want to retrieve.
- Returns:
out – Specified attribute.
- get_comp(label)[source]¶
Get Component via label.
- Parameters:
label (str) – Label of the Component object.
- Returns:
c (tespy.components.component.Component) – Component object with specified label, None if no Component of the network has this label.
- get_conn(label)[source]¶
Get Connection via label.
- Parameters:
label (str) – Label of the Connection object.
- Returns:
c (tespy.connections.connection.Connection) – Connection object with specified label, None if no Connection of the network has this label.
- get_equations() dict[source]¶
Get the actual equations after presolving the problem
- Returns:
dict – Lookup with equation number as index and tuple of label and parameter defining the equation. In case one parameter defines multiple equations, the same equation is repeated.
- get_equations_with_dependents() dict[source]¶
Get the equations together with the variables they depend on.
- Returns:
dict – Lookup with equation (component, (parameter_label, number)) and the variables it depends on as a list (variable number, variable type)
- get_linear_dependent_variables() list[source]¶
Get a list with sublists containing linear dependent variables
- Returns:
list – List of lists of linear dependent variables
- get_linear_dependents_by_object(obj, prop) list[source]¶
Get the list of linear dependent variables for a specified variable
- Parameters:
obj (object) – Parent object holding a variable
prop (str) – Name of the variable (e.g. ‘m’ or ‘h’)
- Returns:
list – list of linear dependent variables
- Raises:
KeyError – In case the object does not have any variables
KeyError – In case the specified property is not a variable
- get_presolved_equations() list[source]¶
Get the list of equations, that has been presolved with their respective parent object
- Returns:
list – list of presolved equations
- get_presolved_variables() list[source]¶
Get the list of presolved variables with their respective parent object and property.
- Returns:
list – list of presolved variables
- get_subsystem(label)[source]¶
Get Subsystem via label.
- Parameters:
label (str) – Label of the Subsystem object.
- Returns:
tespy.components.subsystem.Subsystem – Subsystem objectt with specified label, None if no Subsystem of the network has this label.
- get_variables() dict[source]¶
Get all variables of the presolved problem with their respective represented original variables.
- Returns:
dict – variable number and property with the list of represented variables
- get_variables_before_presolve() list[source]¶
Get the list of variables before presolving.
- Returns:
list – list of original variables
- init_val0(c, key)[source]¶
Set starting values for fluid properties.
The component classes provide generic starting values for their inlets and outlets.
- Parameters:
c (tespy.connections.connection.Connection) – Connection to initialise.
- print_results(colored=True, colors=None, print_results=True, subsystem=None)[source]¶
Print the calculations results to prompt.
- save(json_file_path)[source]¶
Dump the results to a json style output.
- Parameters:
json_file_path (str) – Filename to dump results into.
Note
Results will be saved to specified file path
- save_csv(folder_path)[source]¶
Export the results in multiple csv files in a folder structure
Connection.csv
Component/ - Compressor.csv - ….
Bus/ - power input bus.csv - …
- Parameters:
folder_path (str) – Path to dump results to
- set_attr(**kwargs)[source]¶
Set, resets or unsets attributes of a network.
- Parameters:
iterinfo (boolean) – Print convergence progress to console.
h_range (list) – List with minimum and maximum values for enthalpy value range.
m_range (list) – List with minimum and maximum values for mass flow value range.
p_range (list) – List with minimum and maximum values for pressure value range.
- solve(mode, init_path=None, design_path=None, max_iter=50, min_iter=4, init_only=False, init_previous=True, use_cuda=False, print_results=True, robust_relax=False)[source]¶
Solve the network.
Check network consistency.
Initialise calculation and preprocessing.
Perform actual calculation.
Postprocessing.
It is possible to check programatically, if a network was solved successfully with the .converged attribute.
- Parameters:
mode (str) – Choose from ‘design’ and ‘offdesign’.
init_path (str) – Path to the folder, where your network was saved to, e.g. saving to
nw.save('myplant/test.json')would require loading frominit_path='myplant/test.json'.design_path (str) – Path to the folder, where your network’s design case was saved to, e.g. saving to
nw.save('myplant/test.json')would require loading fromdesign_path='myplant/test.json'.max_iter (int) – Maximum number of iterations before calculation stops, default: 50.
min_iter (int) – Minimum number of iterations before calculation stops, default: 4.
init_only (boolean) – Perform initialisation only, default:
False.init_previous (boolean) – Initialise the calculation with values from the previous calculation, default:
True.use_cuda (boolean) – Use cuda instead of numpy for matrix inversion, default:
False.
Note
For more information on the solution process have a look at the online documentation at tespy.readthedocs.io in the section “TESPy modules”.