tespy.tools package

tespy.tools.analyses module

Module for thermodynamic analyses.

The analyses module provides thermodynamic analysis tools for your simulation. Different analysis classes are available:

This file is part of project TESPy (github.com/oemof/tespy). It’s copyrighted by the contributors recorded in the version control history of the file, available from its original location tespy/tools/analyses.py

SPDX-License-Identifier: MIT

class tespy.tools.analyses.ExergyAnalysis(network, E_F, E_P, E_L=[], internal_busses=[])[source]

Bases: object

Class for exergy analysis of TESPy models.

analyse(pamb, Tamb, Chem_Ex=None)[source]

Run the exergy analysis.

Parameters:
  • pamb (float) – Ambient pressure value for analysis, provide value in network’s pressure unit.

  • Tamb (float) – Ambient temperature value for analysis, provide value in network’s temperature unit.

calculate_group_input_value(group_label)[source]

Calculate the total exergy input of a component group.

create_group_data()[source]

Collect the component group exergy data.

evaluate_busses(cp)[source]

Evaluate the exergy balances of busses.

Parameters:

cp (tespy.components.component.Component) – Component to analyse the bus exergy balance of.

exergy_cats = ['chemical', 'physical', 'massless']
generate_plotly_sankey_input(node_order=[], colors={}, display_thresold=0.001, disaggregate_flows=False)[source]

Generate input data for sankey plots.

Only exergy flow above the display threshold is included. All component groups with transit only (one input and one output) are cut out of the display.

Parameters:
  • node_order (list) – Order for the nodes in the sankey diagram (optional). In case no order is passed, a generic order will be used.

  • colors (dict) – Dictionary containing a color for every stream type (optional). Stream type is the key, the color is the corresponding value. Stream types are:

    • E_F, E_P, E_L, E_D

    • names of the pure fluids of the tespy Network

    • mix (used in case of any gas mixture)

    • labels of internal busses

  • display_threshold (float) – Minimum value of flows to be displayed in the diagram, defaults to 1e-3.

  • disaggregate_flows (boolean) – Separate every flow by chemical, physical and massless exergy, defaults to False.

Returns:

tuple – Tuple containing the links and node_order for the plotly sankey diagram.

print_results(sort_desc=True, busses=True, components=True, connections=True, groups=True, network=True, aggregation=True)[source]

Print the results of the exergy analysis to prompt.

  • The results are sorted beginning with the component having the biggest exergy destruction by default.

  • Components with an exergy destruction smaller than 1000 W is not printed to prompt by default.

Parameters:
  • sort_des (boolean) – Sort the component results descending by exergy destruction.

  • busses (boolean) – Print bus results, default value True.

  • components (boolean) – Print component results, default value True.

  • connections (boolean) – Print connection results, default value True.

  • network (boolean) – Print network results, default value True.

  • aggregation (boolean) – Print aggregated component results, default value True.

remove_transit_groups(group_data)[source]

Remove transit only component groups from sankey display.

Method is recursively called if a group was removed from display to catch cases, where multiple groups are attached in line without any streams leaving the line.

Parameters:

group_data (dict) – Dictionary containing the modified component group data.

single_group_input(group_label, group_data)[source]

Calculate the total exergy input of a component group.

tespy.tools.analyses.categorize_fluids(conn)[source]

tespy.tools.characteristics module

Module for characteristic functions.

The characteristics module provides the integration of characteristic lines and characteristic maps. The user can create custom characteristic lines or maps with individual data.

This file is part of project TESPy (github.com/oemof/tespy). It’s copyrighted by the contributors recorded in the version control history of the file, available from its original location tespy/tools/characteristics.py

SPDX-License-Identifier: MIT

class tespy.tools.characteristics.CharLine(x=array([0, 1]), y=array([1., 1.]), extrapolate=False)[source]

Bases: object

Class for characteristc lines.

Parameters:
  • x (ndarray) – An array for the x-values of the lookup table. Number of x and y values must be identical.

  • y (ndarray) – The corresponding y-values for the lookup table. Number of x and y values must be identical.

  • extrapolate (boolean) – If True linear extrapolation is performed when the x value is out of the defined value range.

Note

This class generates a lookup table from the given input data x and y, then performs linear interpolation. The x and y values may be specified by the user. There are some default characteristic lines for different components, see the tespy.data module. If you neither specify the method to use from the defaults nor specify x and y values, the characteristic line generated will be x = [0, 1], y = [1, 1].

evaluate(x)[source]

Return characteristic line evaluation at x.

Parameters:

x (float) – Input value for linear interpolation.

Returns:

y (float) – Evaluation of characteristic line at x.

Note

This methods checks for the value range first. If extrapolate is False (default) and the x-value is outside of the specified range, the function will return the values at the corresponding boundary. If extrapolate is True the y-value is calculated by linear extrapolation.

\[y = y_0 + \frac{x-x_0}{x_1-x_0} \cdot \left(y_1-y_0 \right)\]

where the index \(x_0\) represents the lower and \(x_1\) the upper adjacent x-value. \(y_0\) and \(y_1\) are the corresponding y-values. On extrapolation the two smallest or the two largest value pairs are used respectively.

get_attr(key)[source]

Get the value of an attribute.

Parameters:

key (str) – Object attribute to get value of.

Returns:

value (object) – Value of object attribute key.

get_domain_errors(x, c)[source]

Prompt error messages, if x value is out of bounds.

Parameters:

x (float) – Input value for linear interpolation.

plot(path, title, xlabel, ylabel)[source]
class tespy.tools.characteristics.CharMap(x=array([0, 1]), y=array([[1., 1.], [1., 1.]]), z=array([[1., 1.], [1., 1.]]))[source]

Bases: object

Class for characteristic maps.

Parameters:
  • x (ndarray) – An array for the first dimension input of the map.

  • y (ndarray) – A two-dimensional array of the second dimension input of the map.

  • z (ndarray) – A two-dimensional array of the output of the map.

Note

This class generates a lookup table from the given input data x, y and z, then performs linear interpolation. The output parameter is z to be calculated as functions from x and y.

evaluate(x, y)[source]

Evaluate CharMap for x and y inputs.

Parameters:
  • x (float) – Input for first dimension of CharMap.

  • y (float) – Input for second dimension of CharMap.

Returns:

z (float) – Resulting z value.

Note

\[\begin{split}\vec{y} = \vec{y_0} + \frac{x-x_0}{x_1-x_0} \cdot \left(\vec{y_1}-\vec{y_0} \right)\\ \vec{z} = \vec{z1_0} + \frac{x-x_0}{x_1-x_0} \cdot \left(\vec{z_1}-\vec{z_0} \right)\end{split}\]

The index 0 represents the lower and 1 the upper adjacent x-value. Using the y-value as second input dimension the corresponding z-values are calculated, again using linear interpolation.

\[z = z_0 + \frac{y-y_0}{y_1-y_0} \cdot \left(z_1-z_0 \right)\]
evaluate_x(x)[source]

Evaluate CharMap for x inputs.

Parameters:

x (float) – Input for first dimension of CharMap.

Returns:

  • yarr (ndarray) – Second dimension input array of CharMap calculated from first dimension input.

  • zarr (ndarray) – Output array of CharMap calculated from first dimension input.

evaluate_y(y, yarr, zarr)[source]

Evaluate CharMap for y inputs.

Parameters:
  • y (float) – Input for second dimension of CharMap.

  • yarr (ndarray) – Second dimension array of CharMap calculated from first dimension input.

  • zarr (ndarray) – Output array of CharMap calculated from first dimension input.

get_attr(key)[source]

Get the value of an attribute.

Parameters:

key (str) – Object attribute to get value of.

Returns:

value (object) – Value of object attribute key.

get_domain_errors(x, y, c)[source]

Check the CharMap for bound violations.

Parameters:
  • x (float) – Input for first dimension of CharMap.

  • y (float) – Input for second dimension of CharMap.

get_domain_errors_x(x, c)[source]

Prompt error message, if operation is out bounds in first dimension.

Parameters:
  • x (float) – Input for first dimension of CharMap.

  • c (str) – Label of the component, the CharMap is applied on.

Returns:

yarr (ndarray) – Second dimension input array of CharMap calculated from first dimension input.

get_domain_errors_y(y, yarr, c)[source]

Prompt error message, if operation is out bounds in second dimension.

Parameters:
  • y (float) – Input for second dimension of CharMap.

  • yarr (ndarray) – Second dimension input array of CharMap calculated from first dimension input.

  • c (str) – Label of the component, the CharMap is applied on.

plot(path, title, xlabel, ylabel)[source]
tespy.tools.characteristics.load_custom_char(name, char_type)[source]

Load a characteristic line of map.

Parameters:
  • name (str) – Name of the characteristics.

  • char_type (class) – Class to be generate the object of.

Returns:

obj (object) – The characteristics (CharLine, CharMap) object.

tespy.tools.characteristics.load_default_char(component, parameter, function_name, char_type)[source]

Load a characteristic line of map.

Parameters:
  • component (str) – Type of component.

  • parameter (str) – Component parameter using the characteristics.

  • function_name (str) – Name of the characteristics.

  • char_type (class) – Class to generate an instance of.

Returns:

obj (object) – The characteristics (CharLine, CharMap) object.

tespy.tools.data_containers module

Module for data container classes.

The DataContainer class and its subclasses are used to store component or connection properties.

This file is part of project TESPy (github.com/oemof/tespy). It’s copyrighted by the contributors recorded in the version control history of the file, available from its original location tespy/tools/data_containers.py

SPDX-License-Identifier: MIT

class tespy.tools.data_containers.ComponentCharacteristicMaps(**kwargs)[source]

Bases: DataContainer

Data container for characteristic maps.

Parameters:
  • func (tespy.components.characteristics.characteristics) – Function to be applied for this characteristic map, default: None.

  • is_set (boolean) – Should this equation be applied?, default: is_set=False.

  • param (str) – Which parameter should be applied as the x value? default: method=’default’.

static attr()[source]

Return the available attributes for a ComponentCharacteristicMaps type object.

Returns:

out (dict) – Dictionary of available attributes (dictionary keys) with default values.

get_num_eq()[source]
property num_eq
set_num_eq(value)[source]
class tespy.tools.data_containers.ComponentCharacteristics(**kwargs)[source]

Bases: DataContainer

Data container for component characteristics.

Parameters:
  • func (tespy.components.characteristics.characteristics) – Function to be applied for this characteristics, default: None.

  • is_set (boolean) – Should this equation be applied?, default: is_set=False.

  • param (str) – Which parameter should be applied as the x value? default: method=’default’.

static attr()[source]

Return the available attributes for a ComponentCharacteristics type object.

Returns:

out (dict) – Dictionary of available attributes (dictionary keys) with default values.

get_num_eq()[source]
property num_eq
set_num_eq(value)[source]
class tespy.tools.data_containers.ComponentMandatoryConstraints(**kwargs)[source]

Bases: DataContainer

Data container for component mandatory constraints.

static attr()[source]

Return the available attributes for a ComponentProperties type object.

Returns:

out (dict) – Dictionary of available attributes (dictionary keys) with default values.

get_num_eq()[source]
property num_eq
set_num_eq(value)[source]
class tespy.tools.data_containers.ComponentProperties(**kwargs)[source]

Bases: FluidProperties

class tespy.tools.data_containers.DataContainer(**kwargs)[source]

Bases: object

The DataContainer is parent class for all data containers.

Parameters:

**kwargs – See the class documentation of desired DataContainer for available keywords.

Note

The initialisation method (__init__), setter method (set_attr) and getter method (get_attr) are used for instances of class DataContainer and its children. TESPy uses different DataContainer classes for specific objectives:

Grouped component properties are used, if more than one component property has to be specified in order to apply one equation, e.g. pressure drop in pipes by specified length, diameter and roughness. If you specify all three of these properties, the DataContainer for the group will be created automatically!

For the full list of available parameters for each data container, see its documentation.

Example

The examples below show the different (sub-)classes of DataContainers available.

>>> from tespy.tools.data_containers import (
... ComponentCharacteristics, ComponentCharacteristicMaps,
... ComponentProperties, FluidComposition, GroupedComponentProperties,
... FluidProperties, SimpleDataContainer)
>>> from tespy.components import Pipe
>>> type(ComponentCharacteristicMaps(is_set=True))
<class 'tespy.tools.data_containers.ComponentCharacteristicMaps'>
>>> type(ComponentCharacteristics(is_set=True, param='m'))
<class 'tespy.tools.data_containers.ComponentCharacteristics'>
>>> type(ComponentProperties(
...     val=100, is_set=True, is_var=True, max_val=1000, min_val=1
... ))
<class 'tespy.tools.data_containers.ComponentProperties'>
>>> pi = Pipe('testpipe', L=100, D=0.5, ks=5e-5)
>>> type(GroupedComponentProperties(
... is_set=True, elements=["L", "D", "ks"]
... ))
<class 'tespy.tools.data_containers.GroupedComponentProperties'>
>>> type(FluidComposition(
... _val={'CO2': 0.1, 'H2O': 0.11, 'N2': 0.75, 'O2': 0.03}, _is_set={'O2'}
... ))
<class 'tespy.tools.data_containers.FluidComposition'>
>>> type(FluidProperties(
...     val=5, val_SI=500000, is_set=True, quantity="pressure"
... ))
<class 'tespy.tools.data_containers.FluidProperties'>
>>> type(SimpleDataContainer(val=5, is_set=False))
<class 'tespy.tools.data_containers.SimpleDataContainer'>
static attr()[source]

Return the available attributes for a DataContainer type object.

Returns:

out (dict) – Dictionary of available attributes (dictionary keys) with default values.

get_attr(key)[source]

Get the value of a DataContainer’s attribute.

Parameters:

key (str) – The attribute you want to retrieve.

Returns:

out – Specified attribute.

set_attr(**kwargs)[source]

Sets, resets or unsets attributes of a DataContainer type object.

Parameters:

**kwargs – See the class documentation of desired DataContainer for available keywords.

class tespy.tools.data_containers.FluidComposition(**kwargs)[source]

Bases: DataContainer

Data container for fluid composition.

Parameters:
  • val (dict) – Mass fractions of the fluids in a mixture, default: val={}. Pattern for dictionary: keys are fluid name, values are mass fractions.

  • val0 (dict) – Starting values for mass fractions of the fluids in a mixture, default: val0={}. Pattern for dictionary: keys are fluid name, values are mass fractions.

  • is_set (dict) – Which fluid mass fractions have been set, default is_set={}. Pattern for dictionary: keys are fluid name, values are True or False.

  • balance (boolean) – Should the fluid balance equation be applied for this mixture? default: False.

property J_col
static attr()[source]

Return the available attributes for a FluidComposition type object.

Returns:

out (dict) – Dictionary of available attributes (dictionary keys) with default values.

get_J_col()[source]
get_is_set()[source]
get_is_var()[source]
get_reference_val()[source]
get_val()[source]
property is_set
property is_var
set_is_set(value)[source]
set_val(value)[source]
property val
class tespy.tools.data_containers.FluidProperties(**kwargs)[source]

Bases: DataContainer

Data container for fluid properties.

Parameters:
  • val (float) – Value in user specified unit (or network unit) if unit is unspecified, default: val=np.nan.

  • val0 (float) – Starting value in user specified unit (or network unit) if unit is unspecified, default: val0=np.nan.

  • val_SI (float) – Value in SI_unit, default: val_SI=0.

  • is_set (boolean) – Has the value for this property been set? default: is_set=False.

  • unit (str) – Unit for this property, default: ref=None.

  • unit (boolean) – Has the unit for this property been specified manually by the user? default: unit_set=False.

property J_col
static attr()[source]

Return the available attributes for a FluidProperties type object.

Returns:

out (dict) – Dictionary of available attributes (dictionary keys) with default values.

get_J_col()[source]
get_is_var()[source]
get_num_eq()[source]
get_reference_val_SI()[source]

Get value of the reference corresponding to own value

Returns:

float – Value of reference container corresponding to this data container’s value.

get_unit()[source]
get_val()[source]
get_val0()[source]
get_val_SI()[source]
get_val_with_unit()[source]
property is_var
property num_eq
set_SI_from_val(units)[source]
set_SI_from_val0(units)[source]
set_is_var(value)[source]
set_num_eq(value)[source]
set_reference_val_SI(value)[source]
set_unit(value)[source]
set_val(value)[source]
set_val0(value)[source]
set_val0_from_SI(units)[source]
set_val_SI(value)[source]
set_val_from_SI(units)[source]
property unit
property val
property val0
property val_SI
property val_with_unit
class tespy.tools.data_containers.GroupedComponentCharacteristics(**kwargs)[source]

Bases: GroupedComponentProperties

Data container for grouped component characteristics.

Parameters:
  • is_set (boolean) – Should the equation for this parameter group be applied? default: is_set=False.

  • elements (list) – Which component properties are part of this component group? default elements=[].

class tespy.tools.data_containers.GroupedComponentProperties(**kwargs)[source]

Bases: DataContainer

Data container for grouped component parameters.

Parameters:
  • is_set (boolean) – Should the equation for this parameter group be applied? default: is_set=False.

  • method (str) – Which calculation method for this parameter group should be used? default: method=’default’.

  • elements (list) – Which component properties are part of this component group? default elements=[].

static attr()[source]

Return the available attributes for a GroupedComponentProperties type object.

Returns:

out (dict) – Dictionary of available attributes (dictionary keys) with default values.

get_num_eq()[source]
property num_eq
set_num_eq(value)[source]
class tespy.tools.data_containers.ReferencedFluidProperties(**kwargs)[source]

Bases: DataContainer

static attr()[source]

Return the available attributes for a FluidProperties type object.

Returns:

out (dict) – Dictionary of available attributes (dictionary keys) with default values.

class tespy.tools.data_containers.ScalarVariable(**kwargs)[source]

Bases: DataContainer

property J_col
static attr()[source]

Return the available attributes for a FluidProperties type object.

Returns:

out (dict) – Dictionary of available attributes (dictionary keys) with default values.

property d
get_J_col()[source]
get_d()[source]
get_is_var()[source]
get_val_SI()[source]
property is_var
set_J_col(value)[source]
set_is_var(value)[source]
set_val_SI(value)[source]
property val_SI
class tespy.tools.data_containers.SimpleDataContainer(**kwargs)[source]

Bases: DataContainer

Simple data container without data type restrictions to val field.

Parameters:
  • val (no specific datatype) – Value for the property, no predefined datatype.

  • is_set (boolean) – Has the value for this property been set? default: is_set=False.

static attr()[source]

Return the available attributes for a SimpleDataContainer type object.

Returns:

out (dict) – Dictionary of available attributes (dictionary keys) with default values.

get_num_eq()[source]
get_val()[source]
property num_eq
set_num_eq(value)[source]
set_val(value)[source]
property val
class tespy.tools.data_containers.VectorVariable(**kwargs)[source]

Bases: DataContainer

Data container for fluid composition.

Parameters:
  • val (dict) – Mass fractions of the fluids in a mixture, default: val={}. Pattern for dictionary: keys are fluid name, values are mass fractions.

  • val0 (dict) – Starting values for mass fractions of the fluids in a mixture, default: val0={}. Pattern for dictionary: keys are fluid name, values are mass fractions.

  • is_set (dict) – Which fluid mass fractions have been set, default is_set={}. Pattern for dictionary: keys are fluid name, values are True or False.

  • balance (boolean) – Should the fluid balance equation be applied for this mixture? default: False.

property J_col
static attr()[source]

Return the available attributes for a FluidComposition type object.

Returns:

out (dict) – Dictionary of available attributes (dictionary keys) with default values.

property d
get_J_col()[source]
get_d()[source]
get_is_var()[source]
get_val_SI()[source]
property is_var
set_J_col(value)[source]
set_is_var(value)[source]
set_val_SI(value)[source]
property val

tespy.tools.global_vars module

Module for global variables used by other modules of the tespy package.

This file is part of project TESPy (github.com/oemof/tespy). It’s copyrighted by the contributors recorded in the version control history of the file, available from its original location tespy/tools/global_vars.py

SPDX-License-Identifier: MIT

class tespy.tools.global_vars.FluidAliases[source]

Bases: object

get_fluid(fluid)[source]

tespy.tools.helpers module

Module for helper functions used by several other modules.

This file is part of project TESPy (github.com/oemof/tespy). It’s copyrighted by the contributors recorded in the version control history of the file, available from its original location tespy/tools/helpers.py

SPDX-License-Identifier: MIT

exception tespy.tools.helpers.TESPyComponentError[source]

Bases: Exception

Custom message for component related errors.

exception tespy.tools.helpers.TESPyConnectionError[source]

Bases: Exception

Custom message for connection related errors.

exception tespy.tools.helpers.TESPyNetworkError[source]

Bases: Exception

Custom message for network related errors.

class tespy.tools.helpers.UserDefinedEquation(label: str, func: callable, dependents: callable, deriv: callable | None = None, conns: list = [], comps: list = [], params: dict = {})[source]

Bases: object

get_structure_matrix()[source]
partial_derivative(var, value=None)[source]
tespy.tools.helpers.bus_char_derivative(component_value, char_func, reference_value, bus_value, **kwargs)[source]

Calculate derivative for bus char evaluation.

tespy.tools.helpers.bus_char_evaluation(component_value, char_func, reference_value, bus_value, **kwargs)[source]

Calculate the value of a bus.

Parameters:
  • comp_value (float) – Value of the energy transfer at the component.

  • reference_value (float) – Value of the bus in reference state.

  • char_func (tespy.tools.characteristics.char_line) – Characteristic function of the bus.

Returns:

residual (float) – Residual of the equation.

\[residual = \dot{E}_\mathrm{bus} - \frac{\dot{E}_\mathrm{component}} {f\left(\frac{\dot{E}_\mathrm{bus}} {\dot{E}_\mathrm{bus,ref}}\right)}\]

tespy.tools.helpers.central_difference(function=None, parameter=None, delta=None, **kwargs)[source]
tespy.tools.helpers.convert_from_SI(property, SI_value, unit)[source]

Get a value in the network’s unit system from SI value.

Parameters:
  • property (str) – Fluid property to convert.

  • SI_value (float) – SI value to convert.

  • unit (str) – Unit of the value.

Returns:

value (float) – Specified fluid property value in network’s unit system.

tespy.tools.helpers.convert_to_SI(property, value, unit)[source]

Convert a value to its SI value.

Parameters:
  • property (str) – Fluid property to convert.

  • value (float) – Value to convert.

  • unit (str) – Unit of the value.

Returns:

SI_value (float) – Specified fluid property in SI value.

tespy.tools.helpers.extend_basic_path(subfolder)[source]

Return a path based on the basic tespy path and creates it if necessary.

The subfolder is the name of the path extension.

tespy.tools.helpers.fluidalias_in_list(fluid, fluid_list)[source]
tespy.tools.helpers.get_all_subdictionaries(data)[source]
tespy.tools.helpers.get_basic_path()[source]

Return the basic tespy path and creates it if necessary.

The basic path is the ‘.tespy’ folder in the $HOME directory.

tespy.tools.helpers.get_chem_ex_lib(name)[source]

Return a new dictionary by merging two dictionaries recursively.

tespy.tools.helpers.merge_dicts(dict1, dict2)[source]

Return a new dictionary by merging two dictionaries recursively.

tespy.tools.helpers.newton_with_kwargs(derivative, target_value, val0=300, valmin=70, valmax=3000, max_iter=10, tol_rel=1e-06, tol_abs=0.001, tol_mode='rel', **function_kwargs)[source]
tespy.tools.helpers.solve(obj, increment_filter)[source]

Solve equations and calculate partial derivatives of a component.

Parameters:

increment_filter (ndarray) – Matrix for filtering non-changing variables.

tespy.tools.logger module

Module for logging specification.

This file is part of project TESPy (github.com/oemof/tespy). It’s copyrighted by the contributors recorded in the version control history of the file, available from its original location tespy/tools/logger.py

SPDX-License-Identifier: MIT

class tespy.tools.logger.FutureWarningHandler(logger)[source]

Bases: object

tespy.tools.logger.add_console_logging(logformat=None, logdatefmt='%H:%M:%S', loglevel=20, log_the_version=True)[source]

Initialise customizable console logger.

Parameters:
  • logformat (str) – Format of the screen output. Default: “%(asctime)s-%(levelname)s-%(message)s”

  • logdatefmt (str) – Format of the datetime in the screen output. Default: “%H:%M:%S”

  • loglevel (int) – Level of logging to stdout. Default: 20 (logging.INFO)

  • log_the_version (boolean) – If True, version information is logged while initialising the logger.

tespy.tools.logger.add_file_logging(logpath=None, logfile=None, logrotation=None, logformat=None, logdatefmt=None, loglevel=10, log_the_version=True, log_the_path=True)[source]

Initialise customisable file logger.

Parameters:
  • logpath (str) – The path for log files. By default a “.tespy’ folder is created in your home directory with subfolder called ‘log_files’.

  • logfile (str) – Name of the log file, default: tespy.log

  • logrotation (dict) – Option to pass parameters to the TimedRotatingFileHandler.

  • logformat (str) – Format of the file output. Default: “%(asctime)s - %(levelname)s - %(module)s - %(message)s”

  • logdatefmt (str) – Format of the datetime in the file output. Default: None

  • loglevel (int) – Level of logging to file. Default: 10 (logging.DEBUG)

  • log_the_version (boolean) – If True, version information is logged while initialising the logger.

  • log_the_path (boolean) – If True, the used file path is logged while initialising the logger.

Returns:

file (str) – Place where the log file is stored.

tespy.tools.logger.check_git_branch()[source]

Pass the used branch and commit to the logger.

The following test reacts on a local system different than on Travis-CI. Therefore, a try/except test is created.

Example

>>> from tespy import logger
>>> try:
...    v = logger.check_git_branch()
... except FileNotFoundError:
...    v = 'dsfafasdfsdf'
>>> type(v)
<class 'str'>
tespy.tools.logger.check_version()[source]

Return the actual version number of the used TESPy version.

Example

>>> from tespy.tools import logger
>>> v = logger.check_version()
>>> int(v.split('.')[0])
0
tespy.tools.logger.critical(msg, *args, **kwargs)[source]

Log ‘msg % args’ with severity ‘CRITICAL’.

To pass exception information, use the keyword argument exc_info with a true value, e.g.

critical(“Houston, we have a %s”, “major disaster”, exc_info=1)

tespy.tools.logger.debug(msg, *args, **kwargs)[source]

Log ‘msg % args’ with severity ‘DEBUG’.

To pass exception information, use the keyword argument exc_info with a true value, e.g.

debug(“Houston, we have a %s”, “thorny problem”, exc_info=1)

tespy.tools.logger.define_logging(logpath=None, logfile='tespy.log', file_format=None, screen_format=None, file_datefmt=None, screen_datefmt=None, screen_level=20, file_level=10, log_the_version=True, log_the_path=True, timed_rotating=None)[source]

Initialise customisable logger.

Parameters:
  • logpath (str) – The path for log files. By default a “.tespy’ folder is created in your home directory with subfolder called ‘log_files’.

  • logfile (str) – Name of the log file, default: tespy.log

  • file_format (str) – Format of the file output. Default: “%(asctime)s - %(levelname)s - %(module)s - %(message)s”

  • screen_format (str) – Format of the screen output. Default: “%(asctime)s-%(levelname)s-%(message)s”

  • file_datefmt (str) – Format of the datetime in the file output. Default: None

  • screen_datefmt (str) – Format of the datetime in the screen output. Default: “%H:%M:%S”

  • screen_level (int) – Level of logging to stdout. Default: 20 (logging.INFO)

  • file_level (int) – Level of logging to file. Default: 10 (logging.DEBUG)

  • log_the_version (boolean) – If True the actual version or commit is logged while initialising the logger.

  • log_the_path (boolean) – If True the used file path is logged while initialising the logger.

  • timed_rotating (dict) – Option to pass parameters to the TimedRotatingFileHandler.

Returns:

file (str) – Place where the log file is stored.

Notes

By default the INFO level is printed on the screen and the DEBUG level in a file, but you can easily configure the logger. Every module that wants to create logging messages has to import the logger.

Examples

To define the default logger you have to import the python logging library and this function. The first logging message should be the path where the log file is saved to.

>>> import logging
>>> from tespy.tools import logger
>>> mypath = logger.define_logging(
...     log_the_path=True, log_the_version=True, timed_rotating={'backupCount': 4},
...     screen_level=logging.ERROR, screen_datefmt = "no_date"
... )
>>> mypath[-9:]
'tespy.log'
>>> logger.debug('Hi')
tespy.tools.logger.error(msg, *args, **kwargs)[source]

Log ‘msg % args’ with severity ‘ERROR’.

To pass exception information, use the keyword argument exc_info with a true value, e.g.

error(“Houston, we have a %s”, “major problem”, exc_info=1)

tespy.tools.logger.exception(msg, *args, exc_info=True, **kwargs)[source]

Convenience method for logging an ERROR with exception information.

tespy.tools.logger.get_logger()[source]
tespy.tools.logger.get_version()[source]

Return a string part of the used version.

If the commit and the branch is available the commit and the branch will b returned otherwise the version number.

Example

>>> from tespy.tools import logger
>>> v = logger.get_version()
>>> type(v)
<class 'str'>
tespy.tools.logger.increment_stacklevel(kwargs)[source]

“Method to force the logging framework to trace past this file

tespy.tools.logger.info(msg, *args, **kwargs)[source]

Log ‘msg % args’ with severity ‘INFO’.

To pass exception information, use the keyword argument exc_info with a true value, e.g.

info(“Houston, we have a %s”, “interesting problem”, exc_info=1)

tespy.tools.logger.log(level, msg, *args, **kwargs)[source]

Log ‘msg % args’ with the integer severity ‘level’.

To pass exception information, use the keyword argument exc_info with a true value, e.g.

log(level, “We have a %s”, “mysterious problem”, exc_info=1)

tespy.tools.logger.progress(value, msg, *args, **kwargs)[source]

Report progress values between 0 and 100, you can also use the extra dict to modify the progress limits. Additionally, log ‘msg % args’ with severity ‘TESPY_PROGRESS_LOG_LEVEL’.

progress(51, “Houston, we have completed step %d of 100.”, 51) progress(0.51, “Houston, we have completed %f percent of the mission.”, 0.51*100, extra=dict(progress_min=0.0, progress_max=1.0))

tespy.tools.logger.result(msg, *args, **kwargs)[source]

Report result values by logging ‘msg % args’ with severity ‘TESPY_RESULT_LOG_LEVEL’.

result(“The result is %f”, 1.23456)

tespy.tools.logger.warning(msg, *args, **kwargs)[source]

Log ‘msg % args’ with severity ‘WARNING’.

To pass exception information, use the keyword argument exc_info with a true value, e.g.

warning(“Houston, we have a %s”, “bit of a problem”, exc_info=1)

tespy.tools.optimization module

Module for OptimizationProblem class.

This file is part of project TESPy (github.com/oemof/tespy). It’s copyrighted by the contributors recorded in the version control history of the file, available from its original location tespy/tools/optimization.py

SPDX-License-Identifier: MIT

class tespy.tools.optimization.OptimizationProblem(model, variables={}, constraints={}, objective=[], minimize=None)[source]

Bases: object

The OptimizationProblem handles the optimization.

  • Set up the optimization problems by specifying constraints, upper and lower bounds for the decision variables and selection of the objective function.

  • Run the optimization, see tespy.tools.optimization.OptimizationProblem.run().

  • Provide the optimization results DataFrame in the .individuals attribute of the OptimizationProblem class.

Parameters:
  • model (custom class) – Object of some class, which provides all the methods required by the optimization suite, see the Example section for a downloadable template of the implementation.

  • variables (dict) – Dictionary containing the decision variables and their respective bounds.

  • constraints (dict) – Dictionary containing the constraints for the model.

  • objective (list) – Name of the objective(s). objective is passed to the get_objectives method of your tespy model instance.

  • minimize (list) – Minimize (True) or maximize an objective (False). Must be passed as list in same order as objective. E.g. minimize=[True, False] if the first objective should be minimized and the second one maximized.

Note

For the required structure of the input dictionaries see the example in below.

Installation of pygmo via pip is not available for Windows and OSX users currently. Please use conda instead or refer to their documentation.

Example

For an example please go to the tutorials section of TESPy’s online documentation.

collect_constraints(border, build=False)[source]

Collect the constraints

Parameters:
  • border (str) – “upper” or “lower”, determine which constraints to collect.

  • build (bool, optional) – If True, the constraints are evaluated and returned, by default False

Returns:

tuple – Return the upper and lower constraints evaluation lists.

fitness(x)[source]

Evaluate the fitness function of an individual.

Parameters:

x (list) – List of the decision variables’ values of the current individual.

Returns:

fitness (list) – A list containing the fitness function evaluation as well as the evaluation of the upper and lower constraints.

get_bounds()[source]

Return bounds of decision variables.

get_nic()[source]

Return number of inequality constraints.

get_nobj()[source]

Return number of objectives.

run(algo, pop, num_ind, num_evo)[source]

Run the optimization algorithm.

Parameters:
  • algo (pygmo.core.algorithm) – PyGMO optimization algorithm.

  • pop (pygmo.core.population) – PyGMO population.

  • num_ind (int) – Number of individuals.

  • num_evo (int) – Number of evolutions.

tespy.tools.plotting module

Module for cycle plotting data extraction.

This file is part of project TESPy (github.com/oemof/tespy). It’s copyrighted by the contributors recorded in the version control history of the file, available from its original location tespy/tools/plotting.py

SPDX-License-Identifier: MIT

tespy.tools.plotting.get_heatexchanger_secondary_Ts(nw, connection_label)[source]

Get the fake process lines and points to visualize heat exchange to secondary fluids of a cycle.

Temperature values are taken from the secondary side and they are matched to the entropy values of the primary side (the branch the connection label) was specified for.

Parameters:
  • nw (tespy.networks.network.Network) – Network object.

  • connection_label (str) – Label of any connection in the desired part of the network.

Returns:

tuple – Tuple with dictionary of process line data of the secondary sides of heat exchangers and process points dictionary with the state information to plot the secondary sides in a Ts diagram

tespy.tools.plotting.get_plotting_data(nw, connection_label)[source]

Retrieve the process information and all state points of the fluid in a given part of the network identified by a connection label.

Parameters:
  • nw (tespy.networks.network.Network) – Network object.

  • connection_label (str) – Label of any connection in the desired part of the network.

Returns:

tuple – Tuple with dictionary of process line data that are passed to the calc_individual_isoline method of fluprodia and process points dictionary with the state information.

tespy.tools.units module

Module for Units class.

This file is part of project TESPy (github.com/oemof/tespy). It’s copyrighted by the contributors recorded in the version control history of the file, available from its original location tespy/tools/units.py

SPDX-License-Identifier: MIT

class tespy.tools.units.Units[source]

Bases: object

classmethod from_json(default_units)[source]
get_default(quantity)[source]
get_ureg()[source]
set_defaults(**kwargs)[source]

Set the default units

Parameters:
  • temperature (str) – Default unit: “kelvin”

  • temperature_difference (str) – Default unit: “delta_degC”

  • enthalpy (str) – Default unit: “J/kg”

  • specific_energy (str) – Default unit: “J/kg”

  • entropy (str) – Default unit: “J/kg/K”

  • pressure (str) – Default unit: “Pa”

  • mass_flow (str) – Default unit: “kg/s”

  • volumetric_flow (str) – Default unit: “m3/s”

  • specific_volume (str) – Default unit: “m3/kg”

  • power (str) – Default unit: “W”

  • heat (str) – Default unit: “W”

  • quality (str) – Default unit: “1”

  • efficiency (str) – Default unit: “1”

  • ratio (str) – Default unit: “1”

  • length (str) – Default unit: “m”

  • speed (str) – Default unit: “m/s”

  • area (str) – Default unit: “m2”

  • thermal_conductivity (str) – Default unit: “W/m/K”

  • heat_transfer_coefficient (str) – Default unit: “W/K”

set_ureg(ureg)[source]

Replace default ureg with a custom one

Parameters:

ureg (pint.UnitRegistry) – Change the pint.UnitRegistry to a custom one

property ureg