Source code for tespy.components.reactors.fuel_cell

# -*- coding: utf-8

"""Module of class FuelCell.


This file is part of project TESPy (github.com/oemof/tespy). It's copyrighted
by the contributors recorded in the version control history of the file,
available from its original location
tespy/components/reactors/fuel_cell.py

SPDX-License-Identifier: MIT
"""

from tespy.components.component import Component
from tespy.components.component import component_registry
from tespy.tools import logger
from tespy.tools.data_containers import ComponentMandatoryConstraints as dc_cmc
from tespy.tools.data_containers import ComponentProperties as dc_cp
from tespy.tools.fluid_properties import h_mix_pT


[docs] @component_registry class FuelCell(Component): r""" The fuel cell produces power by oxidation of hydrogen. **Mandatory Equations** - :py:meth:`tespy.components.reactors.fuel_cell.FuelCell.cooling_fluid_structure_matrix` - :py:meth:`tespy.components.reactors.fuel_cell.FuelCell.cooling_mass_flow_structure_matrix` - :py:meth:`tespy.components.reactors.fuel_cell.FuelCell.reactor_mass_flow_func` - :py:meth:`tespy.components.reactors.fuel_cell.FuelCell.reactor_pressure_structure_matrix` - :py:meth:`tespy.components.reactors.fuel_cell.FuelCell.energy_balance_func` **Optional Equations** - cooling loop: - :py:meth:`tespy.components.component.Component.dp_structure_matrix` - :py:meth:`tespy.components.component.Component.pr_structure_matrix` - :py:meth:`tespy.components.component.Component.zeta_func` - :py:meth:`tespy.components.reactors.fuel_cell.FuelCell.eta_func` - :py:meth:`tespy.components.reactors.fuel_cell.FuelCell.heat_func` - :py:meth:`tespy.components.reactors.fuel_cell.FuelCell.specific_energy_func` Inlets/Outlets - in1 (cooling inlet), in2 (oxygen inlet), in3 (hydrogen inlet) - out1 (cooling outlet), out2 (water outlet) Image .. image:: _images/FuelCell.svg :alt: alternative text :align: center Parameters ---------- label : str The label of the component. design : list List containing design parameters (stated as String). offdesign : list List containing offdesign parameters (stated as String). design_path : str Path to the components design case. local_offdesign : boolean Treat this component in offdesign mode in a design calculation. local_design : boolean Treat this component in design mode in an offdesign calculation. char_warnings : boolean Ignore warnings on default characteristics usage for this component. printout : boolean Include this component in the network's results printout. P : float, dict, :code:`"var"` Power input, :math:`P/\text{W}`. Q : float, dict Heat output of cooling, :math:`Q/\text{W}` e : float, dict, :code:`"var"` Electrolysis specific energy consumption, :math:`e/(\text{J}/\text{m}^3)`. eta : float, dict Electrolysis efficiency, :math:`\eta/1`. pr : float, dict Cooling loop pressure ratio, :math:`pr/1`. dp : float, dict Inlet to outlet pressure difference of cooling loop, :math:`dp/\text{p}_\text{unit}` Is specified in the Network's pressure unit zeta : float, dict, :code:`"var"` Geometry independent friction coefficient for cooling loop pressure drop, :math:`\frac{\zeta}{D^4}/\frac{1}{\text{m}^4}`. Note ---- Other than usual components, the fuel cell has the fluid composition built into its equations for the feed hydrogen and oxygen inlets as well as the water outlet. Thus, the user must not specify the fluid composition at these connections! Example ------- The example shows a simple adaptation of the fuel cell. It works with water as cooling fluid. >>> from tespy.components import (Sink, Source, FuelCell) >>> from tespy.connections import Connection >>> from tespy.networks import Network >>> from tespy.tools import ComponentCharacteristics as dc_cc >>> nw = Network(iterinfo=False) >>> nw.units.set_defaults(**{ ... "pressure": "bar", "temperature": "degC", "volumetric_flow": "l/s" ... }) >>> fc = FuelCell('fuel cell') >>> oxygen_source = Source('oxygen_source') >>> hydrogen_source = Source('hydrogen_source') >>> cw_source = Source('cw_source') >>> cw_sink = Sink('cw_sink') >>> water_sink = Sink('water_sink') >>> cw_in = Connection(cw_source, 'out1', fc, 'in1') >>> cw_out = Connection(fc, 'out1', cw_sink, 'in1') >>> oxygen_in = Connection(oxygen_source, 'out1', fc, 'in2') >>> hydrogen_in = Connection(hydrogen_source, 'out1', fc, 'in3') >>> water_out = Connection(fc, 'out2', water_sink, 'in1') >>> nw.add_conns(cw_in, cw_out, oxygen_in, hydrogen_in, water_out) The fuel cell produces 200kW of electrical power with an efficiency of 0.45. The thermodynamic parameters of the input oxygen and hydrogen are given, the mass flow rates are calculated out of the given power output. The temperature of the water at the outlet should be 50 °C. The cooling fluid is pure water and is heated up from 25 °C to 40 °C. >>> fc.set_attr(eta=0.45, P=-200e03, pr=0.9) >>> cw_in.set_attr(T=25, p=1, fluid={'H2O': 1}) >>> cw_out.set_attr(T=40) >>> oxygen_in.set_attr(T=25, p=1) >>> hydrogen_in.set_attr(T=25) >>> water_out.set_attr(T=50) >>> nw.solve('design') >>> round(cw_in.m.val, 1) 10.2 >>> Q = fc.Q.val / 1e3 >>> round(Q, 0) -642.0 >>> round(fc.eta.val, 2) 0.45 """
[docs] def get_parameters(self): return { 'P': dc_cp( max_val=0, quantity="power", _potential_var=True, description="power output of the fuel cell" ), 'Q': dc_cp( max_val=0, num_eq_sets=1, func=self.heat_func, dependents=self.heat_dependents, quantity="heat", description="heat output of the cooling port" ), 'pr': dc_cp( max_val=1, num_eq_sets=1, structure_matrix=self.pr_structure_matrix, func_params={'pr': 'pr'}, quantity="ratio", description="cooling port outlet to inlet pressure ratio" ), 'dp': dc_cp( min_val=0, structure_matrix=self.dp_structure_matrix, num_eq_sets=1, func_params={"inconn": 0, "outconn": 0, "dp": "dp"}, quantity="pressure", description="cooling inlet to outlet absolute pressure change" ), 'zeta': dc_cp( min_val=0, num_eq_sets=1, dependents=self.zeta_dependents, func=self.zeta_func, func_params={'zeta': 'zeta'}, description="cooling port non-dimensional friction coefficient for pressure loss calculation" ), 'eta': dc_cp( min_val=0, max_val=1, num_eq_sets=1, func=self.eta_func, dependents=self.eta_dependents, quantity="efficiency", description="efficiency of the fuel cell" ), 'e': dc_cp( max_val=0, num_eq_sets=1, func=self.specific_energy_func, dependents=self.specific_energy_dependents, quantity="specific_energy", _potential_var=True, description="equation for specified specific energy consumption of the fuel cell" ) }
[docs] def get_mandatory_constraints(self): return { 'mass_flow_constraints': dc_cmc(**{ 'func': self.reactor_mass_flow_func, 'deriv': self.reactor_mass_flow_deriv, 'dependents': self.reactor_mass_flow_dependents, 'constant_deriv': True, 'num_eq_sets': 2, "description": "equations for oxygen and hydrogen mass flow relation" }), 'cooling_mass_flow_constraints': dc_cmc(**{ 'structure_matrix': self.cooling_mass_flow_structure_matrix, 'num_eq_sets': 1, "description": "cooling fluid mass flow equality equation" }), 'cooling_fluid_constraints': dc_cmc(**{ 'structure_matrix': self.cooling_fluid_structure_matrix, 'num_eq_sets': 1, "description": "cooling fluid composition equality equation" }), 'energy_balance_constraints': dc_cmc(**{ 'func': self.energy_balance_func, 'deriv': self.energy_balance_deriv, 'dependents': self.energy_balance_dependents, 'constant_deriv': False, 'num_eq_sets': 1, "description": "energy balance equation of the reactor" }), 'reactor_pressure_constraints': dc_cmc(**{ 'structure_matrix': self.reactor_pressure_structure_matrix, 'num_eq_sets': 2, "description": "reactor pressure equality equations" }) }
[docs] @staticmethod def get_bypass_constraints(): return {}
[docs] @staticmethod def inlets(): return ['in1', 'in2', 'in3']
[docs] @staticmethod def outlets(): return ['out1', 'out2']
def _add_missing_fluids(self, connections): if self.inl[1] in connections: return ["O2"] elif self.inl[2] in connections: return ["H2"] elif self.outl[1] in connections: return ["H2O"] else: return super()._add_missing_fluids(connections)
[docs] def get_variables(self): if not self.P.is_set: self.set_attr(P='var') msg = ( f'The power output of fuel cells ({self.label}) must either ' 'be a set value or part of the system variables. Since it has ' 'not been set to a fixed value it will be added to the ' 'system\'s variables.' ) logger.info(msg) return super().get_variables()
def _preprocess(self, num_nw_vars): self.o2 = "O2" self.h2 = "H2" self.h2o = "H2O" self.e0 = self.calc_e0() # derivatives determined from calc_P function T_ref = 298.15 p_ref = 1e5 self.h_refh2o = h_mix_pT(p_ref, T_ref, self.outl[1].fluid_data, self.outl[1].mixing_rule) self.h_refo2 = h_mix_pT(p_ref, T_ref, self.inl[1].fluid_data, self.inl[1].mixing_rule) self.h_refh2 = h_mix_pT(p_ref, T_ref, self.inl[2].fluid_data, self.inl[2].mixing_rule) super()._preprocess(num_nw_vars)
[docs] def calc_e0(self): r""" Calculate the specific energy output of the fuel cell. Returns ------- float Specific energy. .. math:: e0 = \frac{\sum_i {\Delta H_f^0}_i - \sum_j {\Delta H_f^0}_j } {M_{H_2}}\\ \forall i \in \text{reation products},\\ \forall j \in \text{reation educts},\\ \Delta H_f^0: \text{molar formation enthalpy} """ hf = {} hf['H2O'] = -286000 hf['H2'] = 0 hf['O2'] = 0 M = self.inl[2].fluid.wrapper[self.h2]._molar_mass e0 = (2 * hf['H2O'] - 2 * hf['H2'] - hf['O2']) / (2 * M) return e0
[docs] def eta_func(self): r""" Equation for efficiency. Returns ------- residual : float Residual value of equation. .. math:: 0 = P - \eta \cdot \dot{m}_{H_2,in} \cdot e_0 """ return self.P.val_SI - self.eta.val_SI * self.inl[2].m.val_SI * self.e0
[docs] def eta_dependents(self): return [self.inl[2].m, self.P]
[docs] def heat_func(self): r""" Equation for heat output. Returns ------- residual : float Residual value of equation. .. math:: 0 = \dot{Q}-\dot{m}_{in,1}\cdot \left(h_{out,1}-h_{in,1}\right) """ return self.Q.val_SI + self.inl[0].m.val_SI * ( self.outl[0].h.val_SI - self.inl[0].h.val_SI )
[docs] def heat_dependents(self): return [self.inl[0].m, self.inl[0].h, self.outl[0].h]
[docs] def specific_energy_func(self): r""" Equation for specific energy output. Returns ------- residual : float Residual value of equation. .. math:: 0 = P - \dot{m}_{H_2,in} \cdot e """ return self.P.val_SI - self.inl[2].m.val_SI * self.e.val_SI
[docs] def specific_energy_dependents(self): return [self.inl[2].m, self.P, self.e]
[docs] def energy_balance_func(self): r""" Calculate the residual in energy balance. Returns ------- residual : float Residual value of energy balance equation. .. math:: \begin{split} 0=&P + \dot{m}_\mathrm{out,2}\cdot\left(h_\mathrm{out,2}- h_\mathrm{out,2,ref}\right)\\ &+\dot{m}_\mathrm{in,1}\cdot\left( h_\mathrm{out,1} - h_\mathrm{in,1} \right)\\ & -\dot{m}_\mathrm{in,2} \cdot \left( h_\mathrm{in,2} - h_\mathrm{in,2,ref} \right)\\ & -\dot{m}_\mathrm{in,3} \cdot \left( h_\mathrm{in,3} - h_\mathrm{in,3,ref} - e_0\right)\\ \end{split} - Reference temperature: 298.15 K. - Reference pressure: 1 bar. """ return self.P.val_SI - self.calc_P()
[docs] def energy_balance_deriv(self, increment_filter, k, dependents=None): r""" Partial derivatives for reactor energy balance. Parameters ---------- increment_filter : ndarray Matrix for filtering non-changing variables. k : int Position of derivatives in Jacobian matrix (k-th equation). """ # derivatives cooling water inlet i = self.inl[0] if i.m.is_var: self.jacobian[k, i.m.J_col] = self.outl[0].h.val_SI - i.h.val_SI if i.h.is_var: self.jacobian[k, i.h.J_col] = -i.m.val_SI # derivative cooling water outlet o = self.outl[0] if o.h.is_var: self.jacobian[k, o.h.J_col] = self.inl[0].m.val_SI # derivatives water outlet o = self.outl[1] if o.m.is_var: self.jacobian[k, o.m.J_col] = o.h.val_SI - self.h_refh2o if o.h.is_var: self.jacobian[k, o.h.J_col] = o.m.val_SI # derivatives oxygen inlet i = self.inl[1] if i.m.is_var: self.jacobian[k, i.m.J_col] = -(i.h.val_SI - self.h_refo2) if i.h.is_var: self.jacobian[k, i.h.J_col] = -i.m.val_SI # derivatives hydrogen inlet i = self.inl[2] if i.m.is_var: self.jacobian[k, i.m.J_col] = -(i.h.val_SI - self.h_refh2 - self.e0) if i.h.is_var: self.jacobian[k, i.h.J_col] = -i.m.val_SI # derivatives for variable P if self.P.is_var: self.jacobian[k, self.p.J_col] = 1
[docs] def energy_balance_dependents(self): return [ [var for c in self.inl + self.outl for var in [c.m, c.h]] + [self.P] ]
[docs] def reactor_mass_flow_func(self): r""" Equations for mass conservation. Returns ------- residual : list Residual values of equation. .. math:: O_2 = \frac{M_{O_2}}{M_{O_2} + 2 \cdot M_{H_2}}\\ 0=O_2\cdot\dot{m}_\mathrm{H_{2}O,out,1}- \dot{m}_\mathrm{O_2,in,2}\\ 0 = \left(1 - O_2\right) \cdot \dot{m}_\mathrm{H_{2}O,out,1} - \dot{m}_\mathrm{H_2,in,1} """ # calculate the ratio of o2 in water M_o2 = self.inl[1].fluid.wrapper[self.o2]._molar_mass M_h2 = self.inl[2].fluid.wrapper[self.h2]._molar_mass o2 = M_o2 / (M_o2 + 2 * M_h2) # equations for mass flow balance of the fuel cell residual = [] residual += [o2 * self.outl[1].m.val_SI - self.inl[1].m.val_SI] residual += [(1 - o2) * self.outl[1].m.val_SI - self.inl[2].m.val_SI] return residual
[docs] def reactor_mass_flow_deriv(self, increment_filter, k, dependents=None): r""" Calculate the partial derivatives for all mass flow balance equations. Returns ------- deriv : ndarray Matrix with partial derivatives for the mass flow equations. """ M_o2 = self.inl[1].fluid.wrapper[self.o2]._molar_mass M_h2 = self.inl[2].fluid.wrapper[self.h2]._molar_mass o2 = M_o2 / (M_o2 + 2 * M_h2) # oxygen input to water output if self.inl[1].m.is_var: self.jacobian[k, self.inl[1].m.J_col] = -1 if self.outl[1].m.is_var: self.jacobian[k, self.outl[1].m.J_col] = o2 k += 1 # hydrogen input to water output if self.inl[2].m.is_var: self.jacobian[k, self.inl[2].m.J_col] = -1 if self.outl[1].m.is_var: self.jacobian[k, self.outl[1].m.J_col] = (1 - o2)
[docs] def reactor_mass_flow_dependents(self): return [ [self.inl[1].m, self.outl[1].m], [self.inl[2].m, self.outl[1].m] ]
[docs] def cooling_mass_flow_structure_matrix(self, k): self._structure_matrix[k, self.inl[0].m.sm_col] = 1 self._structure_matrix[k, self.outl[0].m.sm_col] = -1
[docs] def cooling_fluid_structure_matrix(self, k): self._structure_matrix[k, self.inl[0].fluid.sm_col] = 1 self._structure_matrix[k, self.outl[0].fluid.sm_col] = -1
[docs] def reactor_pressure_structure_matrix(self, k): r""" Structure matrix representing the equations for reactor pressure balance. .. math:: 0 = p_\mathrm{in,2} - p_\mathrm{out,2}\\ 0 = p_\mathrm{in,3} - p_\mathrm{out,2} """ self._structure_matrix[k, self.inl[1].p.sm_col] = 1 self._structure_matrix[k, self.outl[1].p.sm_col] = -1 self._structure_matrix[k + 1, self.inl[2].p.sm_col] = 1 self._structure_matrix[k + 1, self.outl[1].p.sm_col] = -1
[docs] def calc_P(self): r""" Calculate fuel cell power output. Returns ------- P : float Value of power output. .. math:: \begin{split} P = & +\dot{m}_{in,2} \cdot \left( h_{in,2} - h_{in,2,ref} \right)\\ & + \dot{m}_{in,3} \cdot \left( h_{in,3} - h_{in,3,ref} - e_0 \right)\\ & - \dot{m}_{in,1} \cdot \left( h_{out,1} - h_{in,1} \right)\\ & - \dot{m}_{out,2} \cdot \left( h_{out,2} - h_{out,2,ref} \right)\\ \end{split} Note ---- The temperature for the reference state is set to 25 °C, thus the produced water must be liquid as proposed in the calculation of the minimum specific energy for oxidation: :py:meth:`tespy.components.reactors.fuel_cell.FuelCell.calc_e0`. The part of the equation regarding the cooling water is implemented with negative sign as the energy for cooling is extracted from the reactor. - Reference temperature: 298.15 K. - Reference pressure: 1 bar. """ val = ( self.inl[2].m.val_SI * (self.inl[2].h.val_SI - self.h_refh2 - self.e0) + self.inl[1].m.val_SI * (self.inl[1].h.val_SI - self.h_refo2) - self.inl[0].m.val_SI * (self.outl[0].h.val_SI - self.inl[0].h.val_SI) - self.outl[1].m.val_SI * (self.outl[1].h.val_SI - self.h_refh2o) ) return val
[docs] def start_fluid_wrapper_branch(self): outconn = self.outl[1] branch = { "connections": [outconn], "components": [self] } outconn.target.propagate_wrapper_to_target(branch) return {outconn.label: branch}
[docs] def propagate_wrapper_to_target(self, branch): inconn = branch["connections"][-1] if inconn == self.inl[0]: conn_idx = self.inl.index(inconn) outconn = self.outl[conn_idx] branch["connections"] += [outconn] branch["components"] += [self] outconn.target.propagate_wrapper_to_target(branch) else: branch["components"] += [self] return
[docs] def initialise_source(self, c, key): r""" Return a starting value for pressure and enthalpy at inlet. Parameters ---------- c : tespy.connections.connection.Connection Connection to perform initialisation on. key : str Fluid property to retrieve. Returns ------- val : float Starting value for pressure/enthalpy in SI units. """ if key == 'p': return 5e5 elif key == 'h': temp = 20 + 273.15 return h_mix_pT(c.p.val_SI, temp, c.fluid_data, c.mixing_rule)
[docs] def initialise_target(self, c, key): r""" Return a starting value for pressure and enthalpy at outlet. Parameters ---------- c : tespy.connections.connection.Connection Connection to perform initialisation on. key : str Fluid property to retrieve. Returns ------- val : float Starting value for pressure/enthalpy in SI units. """ if key == 'p': return 5e5 elif key == 'h': temp = 50 + 273.15 return h_mix_pT(c.p.val_SI, temp, c.fluid_data, c.mixing_rule)
[docs] def calc_parameters(self): r"""Postprocessing parameter calculation.""" self.Q.val_SI = -self.inl[0].m.val_SI * ( self.outl[0].h.val_SI - self.inl[0].h.val_SI ) self.pr.val_SI = self.outl[0].p.val_SI / self.inl[0].p.val_SI self.dp.val_SI = self.inl[0].p.val_SI - self.outl[0].p.val_SI self.zeta.val_SI = self.calc_zeta(self.inl[0], self.outl[0]) self.e.val_SI = self.P.val_SI / self.inl[2].m.val_SI self.eta.val_SI = self.e.val_SI / self.e0