Source code for tespy.components.nodes.splitter

# -*- coding: utf-8

"""Module of class Splitter.


This file is part of project TESPy (github.com/oemof/tespy). It's copyrighted
by the contributors recorded in the version control history of the file,
available from its original location tespy/components/nodes/splitter.py

SPDX-License-Identifier: MIT
"""

from tespy.components.component import component_registry
from tespy.components.nodes.base import NodeBase
from tespy.tools.data_containers import ComponentMandatoryConstraints as dc_cmc
from tespy.tools.data_containers import SimpleDataContainer as dc_simple


[docs] @component_registry class Splitter(NodeBase): r""" Split up a mass flow in parts of identical enthalpy and fluid composition. **Mandatory Equations** - :py:meth:`tespy.components.nodes.base.NodeBase.mass_flow_func` - :py:meth:`tespy.components.nodes.base.NodeBase.pressure_structure_matrix` - :py:meth:`tespy.components.nodes.splitter.Splitter.enthalpy_structure_matrix` - :py:meth:`tespy.components.nodes.splitter.Splitter.fluid_structure_matrix` Inlets/Outlets - in1 - specify number of outlets with :code:`num_out` (default value: 2) Image .. image:: /api/_images/Splitter.svg :alt: flowsheet of the splitter :align: center :class: only-light .. image:: /api/_images/Splitter_darkmode.svg :alt: flowsheet of the splitter :align: center :class: only-dark Parameters ---------- label : str The label of the component. design : list List containing design parameters (stated as String). offdesign : list List containing offdesign parameters (stated as String). design_path : str Path to the components design case. local_offdesign : boolean Treat this component in offdesign mode in a design calculation. local_design : boolean Treat this component in design mode in an offdesign calculation. char_warnings : boolean Ignore warnings on default characteristics usage for this component. printout : boolean Include this component in the network's results printout. num_out : float, dict Number of outlets for this component, default value: 2. Example ------- A splitter is used to split up a single mass flow into a specified number of different parts at identical pressure, enthalpy and fluid composition. >>> from tespy.components import Sink, Source, Splitter >>> from tespy.connections import Connection >>> from tespy.networks import Network >>> nw = Network(iterinfo=False) >>> nw.units.set_defaults(**{ ... "pressure": "bar", "temperature": "degC" ... }) >>> so = Source('source') >>> si1 = Sink('sink1') >>> si2 = Sink('sink2') >>> si3 = Sink('sink3') >>> s = Splitter('splitter', num_out=3) >>> inc = Connection(so, 'out1', s, 'in1') >>> outg1 = Connection(s, 'out1', si1, 'in1') >>> outg2 = Connection(s, 'out2', si2, 'in1') >>> outg3 = Connection(s, 'out3', si3, 'in1') >>> nw.add_conns(inc, outg1, outg2, outg3) An Air (simplified) mass flow is split up into three mass flows. The total incoming mass flow is 5 kg/s, 3 kg/s and 1 kg/s respectively are leaving the splitter into the first two outlets. The residual mass flow will drain in the last outlet. Temperature and fluid composition will not change. >>> inc.set_attr(fluid={'O2': 0.23, 'N2': 0.77}, p=1, T=20, m=5) >>> outg1.set_attr(m=3) >>> outg2.set_attr(m=1) >>> nw.solve('design') >>> round(outg3.m.val_SI, 1) 1.0 >>> round(inc.T.val, 1) 20.0 >>> round(outg3.T.val, 1) 20.0 """
[docs] @staticmethod def get_parameters(): return {'num_out': dc_simple(description="number of outlets")}
[docs] def get_mandatory_constraints(self): return { 'mass_flow_constraints': dc_cmc(**{ 'func': self.mass_flow_func, 'dependents': self.mass_flow_dependents, 'num_eq_sets': 1, 'description': 'mass balance constraint' }), 'energy_balance_constraints': dc_cmc(**{ 'structure_matrix': self.enthalpy_structure_matrix, 'num_eq_sets': self.num_o, 'description': 'equal enthalpy at all outlets constraint' }), 'pressure_constraints': dc_cmc(**{ 'structure_matrix': self.pressure_structure_matrix, 'num_eq_sets': self.num_o, 'description': 'pressure equality constraints' }), 'fluid_constraints': dc_cmc(**{ 'structure_matrix': self.fluid_structure_matrix, 'num_eq_sets': self.num_o, 'description': 'fluid equality constraints' }) }
[docs] @staticmethod def inlets(): return ['in1']
[docs] def outlets(self): if self.num_out.is_set: return [f'out{i + 1}' for i in range(self.num_out.val)] else: self.set_attr(num_out=2) return self.outlets()
[docs] def propagate_wrapper_to_target(self, branch): branch["components"] += [self] for outconn in self.outl: branch["connections"] += [outconn] outconn.target.propagate_wrapper_to_target(branch)
[docs] def enthalpy_structure_matrix(self, k): r""" Calculate partial derivatives for energy balance equation. Returns ------- deriv : list Matrix of partial derivatives. """ for eq, conn in enumerate(self.outl): self._structure_matrix[k + eq, self.inl[0].h.sm_col] = 1 self._structure_matrix[k + eq, conn.h.sm_col] = -1
[docs] def fluid_structure_matrix(self, k): r""" Calculate partial derivatives for all pressure equations. Returns ------- deriv : ndarray Matrix with partial derivatives for the fluid equations. """ for eq, conn in enumerate(self.outl): self._structure_matrix[k + eq, self.inl[0].fluid.sm_col] = 1 self._structure_matrix[k + eq, conn.fluid.sm_col] = -1